

COMPETITIVENESS AND INNOVATION FRAMEWORK PROGRAMME

ICT Policy Support Programme (ICT PSP)

Towards pan-European recognition of electronic IDs (eIDs)

ICT PSP call identifier: ICT-PSP/2007/1

ICT PSP Theme/objective identifier: 1.2

Project acronym: STORK
Project full title: Secure Identity Across Borders Linked

Grant agreement no.: 224993

 D5.8.3e Software Design for MW architecture

for MW architecture

Deliverable Name : D5.8.3 Technical Design for PEPS and MW models

Status : Final

Dissemination Level : Public

Due date of deliverable : May 31th 2011

Actual submission date : November 11th 2011

Work Package : WP5

Organisation name of lead contractor for

this deliverable :
WP5

Author(s):
Ivo Sumelong, Armin Lunkeit, Bernd Zwattendorfer, Tim

Schneider

Partner(s) contributing : AT, DE

Abstract: The document describes the components for the MW model. The focus is on the integration of

the Austrian and German modules, its combination to a common interoperability layer and a modular

architecture to extend the system (referred to as Modular Authentication Relay Service MARS).

Project co-funded by the European Community under the FP7 ICT Policy Support Programme

 Copyright by the STORK-eID Consortium

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 2 of 75

History

Version Date Modification reason Modified by

0.1 17/01/2010 Initial draft Ivo Sumelong

0.2 Review, Chapter regarding the German eID-

Service architecture added

Armin Lunkeit

0.3 Review Armin Lunkeit,

Ivo Sumelong

0.4 Review and Submission to German STORK

Consortium

Armin Lunkeit,

Ivo Sumelong

0.5 Review and Corrections after comments from

German STORK Consortium

Ivo Sumelong,

Armin Lunkeit

0.6 Review Austria Bernd Zwattendorfer

0.7 Review and Submission to German-Austria

STORK Consortium

Ivo Sumelong

Bernd Zwattendorfer

0.8 16/03/2010 Review and Corrections after comments from

German-Austria STORK Consortium

Ivo Sumelong

Bernd Zwattendorfer

0.9 31/03/2010 Review Ivo Sumelong

0.10 June 2010 Editorial fixes and small updates Tim Schneider

0.11 11/11/2011 Updates for V-IDP 2.0 and regarding reviews Bernd Zwattendorfer,

Tim Schneider

1.0 11/11/2011 Quality review R.C. Wannee, A. van

Overeem

Intermediate internal versions, e.g. for quality reviews, have been omitted.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 3 of 75

Table of contents

HISTORY .. 2

TABLE OF CONTENTS ... 3

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

LIST OF ABBREVIATIONS .. 9

EXECUTIVE SUMMARY .. 10

1 INTRODUCTION ... 11

1.1 OBJECTIVE ... 11

1.2 CONTEXT ... 11

1.3 GLOSSARY ... 11

2 STORK MIDDLEWARE.. 12

2.1 GENERAL ARCHITECTURAL APPROACH .. 12

2.2 FUNCTIONAL REQUIREMENT OF THE STORK MIDDLEWARE 12

2.3 GENERAL STORK AUTHENTICATION REFERENCE COMPONENTS 13

2.4 COMPONENTS OF STORK MW ... 14

3 MIDDLEWARE COMPONENTS INTERFACES .. 16

3.1 VIDP ... 16

3.2 SPWARE .. 16

3.3 DYNAMIC INTEGRATION OF PLUG-ON AND PLUG-INS. .. 18

3.4 VIDP-WS-DE (THE GERMAN WEB SERVICE AND INTERFACES) 19

3.4.1 INITAUTHENTICATION .. 20

3.4.2 RESPONSE ... 22

3.4.3 GETAUTHENTICATIONDATA ... 24

3.4.4 ISLIVE ... 26

3.5 SP-MW ADAPTER AT (WEB) .. 27

3.6 V-PEPS/V-SP (WEB) .. 28

3.6.1 PROCESS FLOW ... 28

3.7 PEPSCONNECTOR ... 29

3.7.1 BACK-END .. 29

3.7.2 FRONT-END ... 30

4 APPLICATION, MODULES AND PACKAGING .. 31

4.1 APPLICATIONS ... 31

4.2 MODULES .. 34

4.3 PACKAGES ... 36

4.3.1 VIDP-API MODULE .. 36

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 4 of 75

4.3.2 VIDP-EJB ... 36

4.3.3 VIDP-WS-EJB .. 36

4.3.4 VIDP-V-SPEPS-WEB .. 36

4.3.5 VIDP-PEPSCONNECTOR-WEB .. 36

4.3.6 VIDP-SPWARE-CLIENT<COUNTRYNAME>-EJB ... 36

4.3.7 VIDP-SERVICES .. 37

4.3.8 VIDP-SPWARE-API ... 37

4.3.9 VIDP-SPWARE-<COUNTRYNAME>-EJB ... 37

4.3.10 VIDP-PEPSCONNECTOR-EJB .. 37

4.3.11 SAML ENGINE ... 37

5 SECURITY CONCEPT .. 38

5.1 AUTHENTICATION AND AUTHORIZATION AT VIDP .. 38

5.2 MESSAGE SECURITY.. 38

6 CODES AND ATTRIBUTES (VIDP-WS AND VP) .. 40

6.1 STATUS (VIDP-WS) .. 40

6.2 ERROR CODES ... 40

6.3 CURRENT SUPPORTED ATTRIBUTES BY EID-SERVICE .. 43

6.4 DE EID-SERVICE STORK ATTRIBUTES MAPPING .. 44

6.5 AT STORK ATTRIBUTES MAPPING .. 45

6.6 ATTRIBUTE STATUS .. 45

7 PERSISTENCE .. 46

7.1 STATE TABLE .. 46

7.2 SP .. 46

7.3 S-PEPS .. 47

7.4 C-PEPS ... 48

7.5 SPWARE .. 49

7.6 PEPSCONNECTOR ... 49

7.7 STORKMEMBERSTATES .. 50

7.8 SESSION ... 50

7.9 SESSION HISTORY ... 53

7.10 STORKATTRIBUTES ... 53

7.11 COUNTRYATTRIBUTE .. 53

7.12 STORKERRORCODE ... 54

7.13 SPWAREERRORCODE ... 55

7.14 OPTION MODEL CONFIGURATION ... 55

7.14.1 OPTION TYPE .. 55

7.14.2 OPTION GROUP ... 55

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 5 of 75

7.14.3 OPTION ... 56

7.14.4 OPTION ITEM .. 57

8 REFERENCES .. 58

A. APPENDIX GERMANY INTEGRATION ... 59

A.1 OVERVIEW ... 59

A.2 ONLINE AUTHENTICATION WITH AUSWEISAPP AND EID-SERVICE 60

A.3 USE CASES .. 61

A.4 SEQUENCE DIAGRAMS .. 65

B. APPENDIX AUSTRIA INTEGRATION .. 70

B.1 AUSTRIAN EID ARCHITECTURE ... 70

B.2 INTEGRATION INTO STORK MIDDLEWARE .. 72

B.2.1 USE CASE: S-PEPS – VIDP – MOA-ID .. 72

B.2.2 USE CASE: SP-AT – VIDP – MOA-ID.. 73

C. APPENDIX C-PEPS INTEGRATION .. 75

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 6 of 75

List of figures

Figure 1: MARS architecture ... 12

Figure 2: General STORK Authentication Reference Components ... 13

Figure 3: Component Diagram of STORK MW ... 14

Figure 4: Architecture of STORK Middleware. Deployment on single application server as three

applications. ... 32

Figure 5: Deployment of applications on different systems. New Plug-ons/in package and

deployed as new applications ... 33

Figure 6: Deployment of applications on different systems (persistenceService together with

VIDP). New Plug-ons/in package within existing VIDP and SPWare ... 33

Figure 7: Deployment of applications on different systems. New Plug-ons/in package within

existing VIDP and SPWare .. 34

Figure 8: German Online Authentication with eID-Service and AusweisApp 60

Figure 9: Authentication Flow- UC-AU-P-eIdService ... 62

Figure 10: UC-AU-M-eIdService ... 64

Figure 11: Sequence Diagram - UC-AU-P-eIdService .. 66

Figure 12: Sequence Diagram - UC-AU-M-eIdService ... 68

Figure 13: Austrian eID architecture ... 70

Figure 14: Authentication Process Flow in Austria ... 71

Figure 15: Austrian citizen to S-PEPS authentication ... 73

Figure 16: Austrian citizen to Austrian SP-MW authentication .. 74

Figure 17: Foreign PEPS citizen to SP-MW .. 75

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 7 of 75

List of tables

Table 1: Reference Components of a General Authentication ... 13

Table 2: Components of STORK Middleware .. 15

Table 3: VID Description of VIDP Functions .. 16

Table 4: StartAuthentication Method ... 16

Table 5: GetAuthenticationData Method ... 16

Table 6: Description of SPWare Methods .. 16

Table 7: StartAuthentication Method ... 17

Table 8: GetAuthenticationData Method ... 17

Table 9: VIDP-WS General Description of Methods ... 20

Table 10: initAuthentication ... 20

Table 11: The MesssageControlType ... 20

Table 12: SPControl ... 20

Table 13: Sample request by initAuthentication ... 22

Table 14: Description of Response Message .. 22

Table 15: Sample Response by initAuthentication with success .. 23

Table 16: Sample Response by initAuthentication with failure ... 23

Table 17: Description of getAuthenticationData Method .. 24

Table 18: Sample Request by getAuthenticationData .. 24

Table 19: Sample Response by getAuthenticationData with success status 25

Table 20: Sample response by getAuthenticationData with failed status 26

Table 21: Description of isLive Method ... 26

Table 22: Sample isLive request ... 27

Table 23: Sample isLive Response ... 27

Table 24: Mandatory parameters in the URL for the AT SP MW adaptor 28

Table 25: Optional parameters in the URL for the AT SP MW adaptor .. 28

Table 26: Description of PEPSConnector Methods ... 29

Table 27: Sample Applications ... 34

Table 28: Description of VIDP Modules .. 35

Table 29: Description SPWare Application Modules .. 35

Table 30: Description of Service Application Modules .. 35

Table 31: Description of Common Modules... 35

Table 32: Packages in VIDP-API Module ... 36

Table 33: Packages VIDP-EJB Module ... 36

Table 34: Packages in VIDP-WS-EJB Module .. 36

Table 35: Packages in VIDP-V-SPEPS-WEB Module ... 36

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 8 of 75

Table 36: Packages in VIDP-PEPSConnector Web ... 36

Table 37: Packages in VIDP-SPWare-Client<CountryName>-EJB Module 36

Table 38: Packages in VIDP-Services Module .. 37

Table 39: Packages in VIDP-SPWare-API Module ... 37

Table 40: Packages in VIDP-SPWare-<CountryName>-EJB ... 37

Table 41: Packages in VIDP-PEPSConnector-EJB ... 37

Table 42: Packages in SAML Engine ... 37

Table 43: Status (VIDP-WS) .. 40

Table 44: Error Codes.. 43

Table 45: Clients Reaction Code .. 43

Table 46: Current Supported Attributes by eID-Service .. 44

Table 47: Attribute Condition .. 44

Table 48: Service STORK Attributes Mapping... 45

Table 49: MOA-ID STORK Attributes Mapping .. 45

Table 50: Attribute Status ... 45

Table 51: State Table.. 46

Table 52: SP Configuration .. 47

Table 53: PEPS Configuration ... 48

Table 54: C-PEPS Configuration ... 49

Table 55: SPWare Configuration ... 49

Table 56: PEPSConnector Configuration .. 50

Table 57: STORKMemberStates Configuration ... 50

Table 58: Session Tracking Table .. 53

Table 59: STORK Attributes Configuration ... 53

Table 60: CountryAttributes Configuration ... 54

Table 61: STORKErrorCode Configuration .. 54

Table 62: SPWareErrorCode Configuration ... 55

Table 63: SPWare Option Type .. 55

Table 64: SPWare Option Group ... 55

Table 65: SPWare Option .. 57

Table 66: General Flow of UC-AU-P-eIdService .. 67

Table 67: General flow in a UC-AU-M-eIdService .. 69

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 9 of 75

List of abbreviations

<Abbreviation> <Explanation>

MW Middleware. Architecture of the integration of eIDs in Services, with a

direct communication between SP and user’s PC, without any central

server. The term also refers to the piece of software of this architecture

that executes on the user’s PC.

C-PEPS Citizen Country PEPS: PEPS in the citizen’s origin country

VIDP Virtual IDP. A system component helping to abstract Pan-European eID -

interoperability. It either serves as a delegation component between the

SP-MW or S-PEPS and the needed SPWare (appropriate MW server

component) or enables an SP-MW to communicate with other C-PEPS.

MW Middleware. Architecture of the integration of eIDs in Services, with a

direct communication between SP and user’s PC, without any central

server. The term also refers to the piece of software of this architecture

that executes on the user’s PC.

PEPS Pan European Proxy Service or Server

S-PEPS Service Provider PEPS: PEPS in the Service Provider’s country

SP Service Provider

SPWare Piece of software installed at the Service Provider, that complements the

MW

UCA User Centric Authentication, is an authentication use case whereby the

User Agent acts as a gateway for all communication between SP MW

eID-Service The German Middleware that authenticates German citizens during online

authentication with the help of the Bürgerclient

AusweisApp/

Bürgerclient

 Client middleware that runs on German citizens PC’s

MOA-ID Server-side middleware processing eID authentication in Austria

BKU Client middleware to be used in Austria

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 10 of 75

Executive summary

This document is the software design for the MW architecture, especially of the MARS software

architecture, a common building block used in STORK to achieve eID interoperability. The

MARS software architecture (in opposition to the PEPS common code documented in D5.8.3c

[5]) is used to map the STORK architecture to the German-Austrian Online Authentication

infrastructure. The integration of that infrastructure into the STORK middleware has been shown

by graphics and short explanations. It focuses on the technical components and their roles in the

STORK middleware. Also low-level information, such as sequence diagrams etc. is provided.

The MARS software architecture was realized with the special requirements of countries which

do not want or are allowed to have a central gateway for eID interoperability. So far, Germany

and Austria are using this architecture to integrate their eID solutions into the interoperability

framework but MARS was designed to be extensible. Beside the possibility to support more

middleware solutions in the future, the MARS software can also be extended to realize a PEPS.

While this has not been implemented so far, the Appendix gives some hints on how to do this.

This document is an annex of the D5.8.3 Technical Design for PEPS and MW models and

interoperability document [2], in which you can find more details in the introductory chapters.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 11 of 75

1 Introduction

1.1 Objective

This document presents the Software design of the components of the STORK MW architecture.

It pretends to specify the behaviour of its components, in such a way that programmers can work

with it.

The view which was offered by D5.8.3a, by business process, is now complemented with views

by components and classes. Thus please note that this document is to be understood by

programmers.

As this is one document of the deliverable D5.8.3 Technical Design, please refer to D5.8.3 for the

other parts of the introduction.

1.2 Context

Germany and Austria decided the introduction of the electronic identification card which provides

the possibility of an electronic identification and authentication of the eID card holder. This

process requires a software component (client middleware ―AusweisApp‖ or ―BKU‖) for the end-

user and a server-side middleware called eID-Service (Germany) or MOA-ID (Austria) which is

required to access the data stored electronically on the eID card.

The STORK approach requires the possibility of an electronic authentication and identification by

the use of an infrastructure provided by the Member States.

This document presents information about the German eID approach using the AusweisApp and

the eID-Service as well as the Austrian MOA-ID approach and their integration into the STORK

architecture.

Moreover, this document handles different designs of User-Centric Authentication (UCA)

whereby authentication requests and responses are directed through the user agent by using e.g. an

S-PEPS as well as other various alternatives such as avoiding request/responses through the user

agent by directly accessing the VIDP-WS interface. Moreover, there are scenarios whereby a SP

will not like to expose the Authentication Service to end users and vice versa. After a successful

authentication some SPs will prefer authentication status notifications with authentication data in

one call (by S-PEPS) while others will prefer to pull the authentication data (VIDP-WS). In order

to achieve this dynamism and flexibility, an optional configuration model architecture is required

as well as a modular approach for integration of the respective components.

The above description can be summarized to four clear Use Cases defined in the STORK

Architecture which include:

1. UC-AU-P-eIdService

2. UC-AU-M-eIdService

3. S-PEPS – VIDP – MOA-ID

4. SP-AT – VIDP – MOA-ID

5. SP – VIDP – C-PEPS

1.3 Glossary

The complete STORK glossary can be found on the STORK Website using the following link:

http://www.eid-STORK.eu/index.php?option=com_smf&Itemid=33&topic=42.0.

http://www.eid-stork.eu/index.php?option=com_smf&Itemid=33&topic=42.0.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 12 of 75

2 STORK Middleware

The STORK Middleware (or V-IDP from a functional point of view) acts as a gateway between

SP, S-PEPS, SPWare and C-PEPS. To understand the role of the V-IDP in the general context,

please refer to Figure 2: System Context Diagram of D5.8.3a.

2.1 General Architectural Approach

The middleware is based on the so-called MARS architecture. The plug-ons (e.g. V-SP/V-PEPS)

handle requests from external systems (SP, User Agents, and PEPS) while plug-ins handle

requests from the STORK Middleware connecting to external systems like the German eID-

Service or the Austrian server-side middleware MOA-ID. Figure 1 illustrates the various

deployment options for the MARS architecture.

Figure 1: MARS architecture

2.2 Functional Requirement of the STORK Middleware

The MW will provide the following services to a SP, S-PEPS or C-PEPS.

 Handling all scenarios of a UCA

 Being able to route and receive calls from a C-PEPS

 Being able to route requests to the country-specific SPWare

 There are other functions of the VIDP such as certificate validation which are not part of

the pilot project.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 13 of 75

2.3 General STORK Authentication Reference Components

The diagram below presents components in the STORK authentication and their bindings.

Figure 2: General STORK Authentication Reference Components

The following table provides a short description of the used components.

Reference Components of a General Authentication

Name Description

SP The service provider requiring user authentication/identification

S-PEPS Routes authentication request from SP to VIDP or other PEPS

VIDP This handles the authentication process. It supports both scenarios of a UCA. It

routs calls to C-PEPS or to SPWare like eID-Service

eID-Service Handles in/outbound authentication messages as well as communication with

the client middleware and encapsulates the German IDP

MOA-ID Handles in/outbound authentication messages as well as communication with

the client middleware and encapsulates the Austrian IDP

Client middleware Authenticates and retrieves end user attributes from the electronic identity card

Browser Intermediary between SP, VIDP, PEPS and client middleware.

Table 1: Reference Components of a General Authentication

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 14 of 75

2.4 Components of STORK MW

The figure below presents the various components of the STORK MW and their binding protocols followed by a table detailing their respective functions.

Figure 3: Component Diagram of STORK MW

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 15 of 75

Name Description

VIDP-WS-EJB (web service) Used to initiate authentication by SP when a secured

resource is accessed by an end user

Used to retrieve authentication information by SP

VIDP-V-PEPS-WEB Receives calls from S-PEPS and forward them to VIDP as

well as return calls to S-PEPS

Used by S-PEPS to retrieve authentication data

VIDP-EJB Receives calls from either VIDP-WS-EJB or VIDP-V-

PEPS-WEB and forwards the message either to a

PEPSConnector or SPWare Client using a service locator

VIDP-SPWare-Client-<CountryName>-

EJB

creates and forward calls to MS specific SPWare

implementation

VIDP-SPWare-API Contains SPWare interfaces, exceptions, and messages as

well as utility classes

VIDP-SPWare-<CountryName>-EJB Contains MS specific SPWare implementation.

Receives calls from VIDP, does attribute mapping if

necessary and forwards calls to SPWare

VIDP-Services-EJB Contain persistence, session, and option model services

OptionModelService Used to read options for either SPWareConnector or

PEPSConnector

SessionManager Stores and retrieves all session information for

authentication as well as context based optional model

information

SAMLEngine Creates and processes SAML Requests/Responses

VIDP-SPWareConnector-Client-

<CountryName>-EJB

Provides connection services to SPWare service

implementation. Acts as a client to SPWare

implementation. This is the integration point of SPWare to

VIDP

PersistenceService Provides CRUD services for all persistence tables like

those described in chapter 7

LogService Logs all in/outbound messages

Table 2: Components of STORK Middleware

The components named VIDP-SPWareXXX<CountryName>-EJB are country-specific

components which are currently implemented by Austria and Germany. Future plug-ins need to

implement new instances of those components.

All other components are universal to the V-IDP. Please note that the VIDP-V-PEPS-WEB (plug-

on) is only supposed to be used to communicate with S-PEPSes and that VIPD-WS-EJB web

service is currently only used by German SPs.

There might be more plug-ons in the future depending on the needs of one country to let SPs

directly communicate with the V-IDP but the web service plug-on is meant to be universal and is

not restricted for use with Germany alone.

.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 16 of 75

3 Middleware Components Interfaces

This chapter presents the interfaces and messages of the various components of the MW

3.1 VIDP

The VIDP handles the routing of calls from plug-ons to SPWare or C-PEPS (using

PEPSConnector).

Methods Description Comments

startAuthentication Called by plug-on (e.g. VIDP-WS or V-SP/V-PEPS) to

initiate an authentication

getAuthenticationData Called by a plug-on to retrieve authentication data from a

Member State

MW (e.g. eID-Service)

Table 3: VID Description of VIDP Functions

Message Description Type and Default

Inbound

STORKAuthnRequest STORK SAML Request Object. See details

below

STORKAuthnRequest

Outbound

StartAuthResponse Not nullable, StartAuthResponse

Exception VIDPException, thrown when exception

occurs within the VIDP or SPWare

Table 4: StartAuthentication Method

getAuthenticationData

Message Description Type and Default

Inbound

VIDPGetAuthDataRequest Holds session and country information VIDPGetAuthDataRequest

Outbound

STORKResponse Holds SAMLResponse information, Not

nullable,

STORKResponse

Exception VIDPException, when exception occurred

within, VIDP or returned by SPWare

Table 5: GetAuthenticationData Method

3.2 SPWare

It acts as an Integrator between the VIDP and member states SPWare (e.g. eID-Service). It

handles – if required – translations from and to STORK attributes to respective member state

attributes and STORK error codes mappings.

Methods Description Comments

startAuthentication Called by VIDP to initiate an authentication at member state

MW (e.g. eID-Service)

getAuthenticationData Called by VIDP to retrieve authentication data from a

member state MW (e.g. eID-Service)

Table 6: Description of SPWare Methods

Message Description Type and Default

Inbound

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 17 of 75

STORKAuthnRequest STORK SAML Request Object. See details

below

STORKAuthnRequest

Outbound

StartAuthResponse Not nullable, StartAuthResponse

Exception SPWareException, thrown when an

exception occurs within the SPWare

Table 7: StartAuthentication Method

Message Description Type and Default

Inbound

GetAuthDataRequest Holds session information GetAuthDataRequest

Outbound

STORKResponse Holds SAMLResponse information, Not

nullable,

STORKResponse

Exception SPWareException, thrown when an

exception occurred in a SPWare

implementation or an error code is returned

by SPWare or C-PEPS

Table 8: GetAuthenticationData Method

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 18 of 75

3.3 Dynamic integration of plug-on and plug-ins.

Plug-in Modules

These modules could be either web or ejb.

Implementation

1. Create ejb module as a MS SPWare

2. Download VIDP-spware-api-1.0-RELEASE.jar and mw-persistence-api-1.0-

RELASE.jar from https://vidp.openlimit.com:8120/artifactory and create dependencies

to them

3. Create remote and local interfaces that extend eu.stork.vidp.spware.api.interfaces.SPWare

interface

4. Implement both interfaces. In the implementation by injection, reference

PersistenceManager and SessionManager as follows:

 @EJB(mappedName = "SessionManagerBean")

 private SessionManagerRemote sessionManagerBean;

 @EJB(mappedName = "PersistenceServiceBean")

private PersistenceServiceRemote persistenceServiceBean;

 Always ensure to validate the session state based on the transaction function call.

 Any failed transaction should lead to an update of the session with a mapping of the

SPware error to STORKError code. A corresponding SPWareException must be

returned

 See STORK spec on how to handle attributes requested under

(unsupported|mandatory and unsupported|optional)

5. Deploy the ejb module or package it within the VIDP.ear Really within here or as part of

VIDP-SPware.ear

Configurations:

1. Ensure the SPWares country is configured in ol_country (a list of all countries)and

included in the list of ol_storkmemberstates

2. Configure the SPWare in stork_live database within the ol_ SPware table. The countryID

of the SPWare is mandatory.

https://vidp.openlimit.com:8120/artifactory

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 19 of 75

3. Configure a contextframe for the SPWare in ol_contextframe. The entry should contain

only the SPWareID and other mandatory entries.

4. Go to ol_optionItem and configure the SPWare as follows

 Find the id of the isSPWareRemoteInterfaceEnabled in ol_option

 Create an entry in ol_optionItem using the optionID of the

isSPWareRemoteInterfaceEnabled and the contextframeID from ol_contextframe, set

the BooleanValue column to true

 Find the id of an optionName ―Remote-API‖ under

optiongroupName=‖SPWareAPIs‖ in ol_option

 Create an entry in ol_optionItem using the optionID of the Remote-API and the

contextframeID from 3 above, set the StringValue=canonical name of the SPWare

remote interface

5. Do SPWare Error Code –STORK Error Code Mapping within ol_spwareerrorcode

6. Do SPWare-STORK Attribute mapping in ol_countryattribute

Plug-ons

 Create a web or ejb module with reference to VIDP-Client-API.

 Use the VIDPClient to forward all calls to VIDP.

In the implementation by injection reference PersistenceManager and SessionManager as follows:

 @EJB(mappedName = "SessionManagerBean")

 private SessionManagerRemote sessionManagerBean;

 @EJB(mappedName = "PersistenceServiceBean")

private PersistenceServiceRemote persistenceServiceBean;

 Always ensure to create the session before calling startAuthentication and delete it after

getAuthenticationData.

 Any failed transaction should lead to an update of the session with the STORKErrorcode

 Ensure to initialise the STORKSAMLEngine only once.

3.4 VIDP-WS-DE (The German Web Service and Interfaces)

The VIDP-WS (web service) is described in this section. The internal implementation of this

service is not mentioned here. Described issues include methods, in/outbound messages, and

codes (status, error and attribute status). For every message there is a sample provided to give a

clearer view of any message description.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 20 of 75

Methods Description Comments

initAuthentication Called by SP to initiate an authentication

getAuthenicationData Called by SP to retrieve authentication data

isLive In Live production to avoid calling business methods that could

lead to financial cost and long execution time, the isLive

method is used to check if service is responding to requests

without actually calling initAuthentication or

getAuthenicationData

Always

return

success if

service is

running.

Table 9: VIDP-WS General Description of Methods

3.4.1 initAuthentication

Message Description Type and Default

Inbound

RequestControl Is a MesssageControlType. See Table 11. MesssageControlType

SPControl Holds information for protection of services as well

as VIDP control.

SPControl

See structure in sample

below

PersonConfig Holds attribute information required by SP. For

message details see sample authenticationRequest

below as well as the special table titled

―PersonConfig‖

Outbound

Response Not nullable See section 3.1.2

Exception No exception. Even SAOPFault exception are

avoided

Table 10: initAuthentication

Attribute Description Type and Default

TransactionID Identifier for this conversation String, not null

CreateTimestamp The time the request was created Timestamp, not null

ValidStartTimestamp The time the request starts to become valid Timestamp, not null

ValidEndTimestamp The time the request becomes invalid Timestamp, not null

Comment Conversation=initAuthentication+getAuthenticationData

Table 11: The MesssageControlType

Attribute Description Type and Default

SPID Unique Identifier of an SP obtained from the String, not null

Domain Domain of the SP URI, not null

Application Application found within the domain of the

SP

URI, not null

QAALevel The QAALevel int, not null

CountryCode The citizen’s member state ISO name String, not null

ServiceProviderIssuerURL SP inique URL identifier URI, not null

AssertionConsumerService

URL

URL to return authentication responses URI, not null

Comments

Table 12: SPControl

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 21 of 75

Sample request by initAuthentication

<AuthenticationRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="STORK-VIDP-WS.xsd">

<!—Element RequestControl and its child elements are mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!—Element SPControl and its child elements are mandatory-->

<SPControl>

<SPID>SP Muster ID XXXXX</SPID>

 <CountryCode> User Member States ISO Name(AT)</Country>

 <Domain> SP Muster http:www.sp.de </ Domain >

 <Application> http:www.sp.de/Shop</Application>

<QAALevel> SP Muster QAA </QAALevel>

< AssertionConsumerURL > SP Muster http:www.sp.de</ AssertionConsumerURL >

< ServiceProviderIssuerURL > SP Muster http:www.sp.de</ ServiceProviderIssuerURL >

</SPControl>

<!—Element PersonConfig is mandatory-->

<PersonConfig>

<!--Element DocumentType is optional-->

<DocumentType Required="true"/ >

<!--Element IssuingState is optional-->

<IssuingState Required="true"/ >

 <!--Element DateOfExpiry is optional-->

<DateOfExpiry Required="true" />

<!--Element GivenNames is optional-->

<GivenNames Required="true" />

<!--Element FamilyName is optional-->

<FamilyName Required="true"/ >

<!--Element ArtisticName is optional-->

<ArtisticName Required="true" />

 <!--Element AcademicTitle is optional-->

<AcademicTitle Required="true" />

<!--Element DateOfBirth is optional-->

<DateOfBirth Required="true" />

 <!--Element PlaceOfBirth is optional-->

<PlaceOfBirth Required="true" />

<!--Element PlaceOfResidence is optional-->

<PlaceOfResidence Required="true" />

<!—Element RestrictedIdentification is optional-->

<RestrictedIdentification Required="true" / >

 <!--Element CommunityIDVerification is optional-->

<CommunityIDVerification Required="true" Criteria="string"/>

<!--Element AgeVerifcation is optional-->

<AgeVerifcation Required="true" Criteria="string"/>

<!--Element DocumentValidity is optional-->

 <DocumentValidity Required="true" Criteria="string"/>

 <!--Element Age is optional-->

<Age Required="true" />

<!--Element Gender is optional-->

<Gender Required="true" />

<!--Element NationalityCode is optional-->

<NationalityCode Required="true" />

<!--Element Marital Status is optional-->

<MaritalStatus Required="true" />

<!--Element ResidencePermit is optional-->

<ResidencePermit Required="true" />

<!--Element TextResidenceAddress is optional-->

<TextResidentAddress Required="true" />

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 22 of 75

Sample request by initAuthentication

<!--Element Email is optional-->

<Email Required="true" />

</PersonConfig>

</AuthenticationRequest>

Table 13: Sample request by initAuthentication

3.4.2 Response

This object is returned during any conversation with the service. Its states depend on the type of

conversation and possible processing status as well as errors. It carries personal data and

authentication data in case a getAuthenticationData call was made by the SP.

Parameter Description Type and Default

RequestControl The RequestControl sent by SP is

returned

MessageControlType, not null

ResponseControl A new MessageType from

Middleware to SP. Its

transactionID should be same as

that in RequestControl, not null

MessageControlType, not null

Status int 0 for SUCCESS else 1 for FAILURE, 2 for

PENDING (Currently Status=2 is not

supported)

HttpObject String, nullable Not null when status is 0 else null and set only

during initAuthentication. Its content is closed

in a character data and should be redirected to

the User-Agent

Person nullable Set only during getAuthenticationData and

when status is 0. It holds the authentication data

returned from VIDP. See Authentication Data

example below.

Error Error, nullable Not null when status is 1 else null. Contains

error code and message. Set in case of an error

during initAuthentication and

getAuthenticationData. See section 3.1.3

Parameter Type Default

ErrorCode Int

Message String, not

null

Table 14: Description of Response Message

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 23 of 75

Sample Response by initAuthentication with success

<Response xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="STORK-VIDP-WS.xsd">

<!--Element RequestControl is mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!--Element ResponseControl is mandatory-->

 <ResponseControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ResponseControl>

<Status>0</Status>

<HttpObject>

<![CDATA[<HTML><HEAD>

 <TITLE> eCard Client Initiator

 </TITLE> </HEAD> <BODY>

 <object type="application/vnd.ecard-client">

 <param name="ServerAddress" value="eID-Service IP"/>

 <param name="SessionIdentifier" value="123456"/>

 <param name="Binding" value="urn:liberty:paos:2003-08"/>

 <param name="PathSecurity-Protocol" value="uri:iso:PAOS"/>

 <param name="PathSecurity-Parameters"

 value="1234567891234567898765432198765432112345678912345678987654321234567898765 4321234567

8987654321239876543212345678987654321234567898765432123456789876543212 34567898765432123456789

876543211234567891234567898765432123456789876543212345678 987654321234567898765432123456789876

5FF"/> <param name="RefreshAddress" value="https://www.SP.de/AssertionConsumerURL"/>

 </object> </BODY></HTML>]]>

</HttpObject>

</Response>

Table 15: Sample Response by initAuthentication with success

Sample response by initAuthentication with failure

<Response xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="SPAuthenticationService.xsd">

<!--Element RequestControl is mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!--Element ResponseControl is mandatory-->

 <ResponseControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ResponseControl>

<Status>0</Status>

 <Error><Message>VIDP unknown internal error </Message>

 <ErrorCode>100</ErrorCode> </Error> </Response>

Table 16: Sample Response by initAuthentication with failure

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 24 of 75

3.4.3 getAuthenticationData

Message Description Type and Default

Inbound

Timestamp Timestamp during request Timestamp, not null

TransactionID Identifier for this conversation String, not null

PolicyInfo Policy used by client Not null

SPAuthentication Holds information for authentication and

authorization and process control at VIDP

Not Nullable

MessageID Identifier for this request String, not null

Outbound

Response Holds the authentication data (Person

object), not null

Response (see description in

the table below)

Exception No Exception is thrown, also SOAPFault

are avoided

Table 17: Description of getAuthenticationData Method

Sample request by getAuthenticationData

GetAuthenticationDataRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="STORK-VIDP-WS.xsd">

<!—Element RequestControl and its child elements are mandatory-->

<RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!—Element SPControl and its child elements are mandatory-->

<SPControl>

<SPID>SP Muster ID XXXXX</SPID>

 <CountryCode> User Member States ISO Name(AT)</Country>

 <Domain> SP Muster http:www.sp.de </ Domain >

 <Application> http:www.sp.de/Shop</Application>

<QAALevel> SP Muster QAA </QAALevel>

< AssertionConsumerURL > SP Muster http:www.sp.de</ AssertionConsumerURL >

< ServiceProviderIssuerURL > SP Muster http:www.sp.de</ ServiceProviderIssuerURL >

</SPControl>

GetAuthenticationDataRequest>

Table 18: Sample Request by getAuthenticationData

Sample response by getAuthenticationData with success status

<Response xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="

STORK-VIDP-WS.xsd">

<!--Element RequestControl is mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!--Element ResponseControl is mandatory-->

 <ResponseControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 25 of 75

</ResponseControl>

<Status>0</Status>

<!--AuthenticationData is optional and appears only when getAuthenticationData and when status above is 0-->

<Person>

 <!--Element DocumentType is optional-->

 <DocumentType>string</DocumentType>

<!--Element IssuingState is optional-->

<IssuingState>string</IssuingState>

<!--Element DateOfExpiry is optional-->

<DateOfExpiry>1999-01-21</DateOfExpiry>

<!--Element GivenNames is optional-->

<GivenNames>string</GivenNames>

<!--Element FamilyName is optional-->

<FamilyName>string</FamilyName>

<!--Element ArtisticName is optional-->

<ArtisticName>string</ArtisticName>

<!--Element AcademicTitle is optional-->

<AcademicTitle>string</AcademicTitle>

<!--Element DateOfBirth is optional-->

<DateOfBirth>1999-01-21</DateOfBirth>

<!--Element PlaceOfBirth is optional-->

<PlaceOfBirth>

<StreetName>string</StreetName>

<StreetNumber>string</StreetNumber>

<AppartmentNumber>string</AppartmentNumber>

<PostalCode>string</ PostalCoder>

<Town>string</Town>

<Municipality>string</ Municipality >

<State>string</State>

<CountryCode>string</CountryCode>

</PlaceOfBirth>

<!--Element PlaceOfResidence is optional-->

 <PlaceOfResidence>

<StreetName>string</StreetName>

<StreetNumber>string</StreetNumber>

<AppartmentNumber>string</AppartmentNumber>

<PostalCode>string</ PostalCoder>

<Town>string</Town>

<Municipality>string</ Municipality >

<State>string</State>

<CountryCode>string</CountryCode>

</PlaceOfResidence>

<!--Element RestrictedId is optional-->

<RestrictedIdentification>1234567890ABCDEF</RestrictedIdentification>

<!--Element CommunityIDVerification is optional-->

<CommunityIDVerification>

<Request>string</Request>

<Result>true</Result>

</CommunityIDVerification>

<!--Element AgeVerifcation is optional—

<AgeVerifcation>

<Request>65535</Request>

<Result>true</Result>

</AgeVerifcation>

<!--Element DocumentValidity is optional-->

<DocumentValidity>

<ReferenceDate>1999-01-21</ReferenceDate>

<Status>string</Status>

</DocumentValidity>

</Person>

</Response>

Table 19: Sample Response by getAuthenticationData with success status

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 26 of 75

Sample response by getAuthenticationData with failed status

<Response xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="

STORK-VIDP-WS.xsd">

<!--Element RequestControl is mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!--Element ResponseControl is mandatory-->

 <ResponseControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ResponseControl>

<Status>1</Status>

<Error>

<Message>VIDP unknown internal error </Message>

<ErrorCode>100</ErrorCode>

</Error>

</Response>

Table 20: Sample response by getAuthenticationData with failed status

3.4.4 isLive

Used by SP to find out service availability thus avoiding financial cost or performance degrading

in live production.

Message Type and Default

Inbound

PingRequest Parameter Type, Description

RequestControl MessageControlType

SPControl SPControl

Outbound

Response Holds error if an error occurred else carries only

status.

Response (see description in the

table below)

Exception No Exception is thrown, also SOAPFault are

avoided

Table 21: Description of isLive Method

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 27 of 75

Sample isLive request

PingRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="

STORK-VIDP-WS.xsd">

<!—Element RequestControl and its child elements are mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!—Element SPControl and its child elements are mandatory-->

<SPControl>

<SPID>SP Muster ID XXXXX</SPID>

 <CountryCode> User Member States ISO Name(AT)</Country>

 <Domain> SP Muster http:www.sp.de </ Domain >

 <Application> http:www.sp.de/Shop</Application>

<QAALevel> SP Muster QAA </QAALevel>

< AssertionConsumerURL > SP Muster http:www.sp.de</ AssertionConsumerURL >

< ServiceProviderIssuerURL > SP Muster http:www.sp.de</ ServiceProviderIssuerURL >

</SPControl>

</PingRequest>

Table 22: Sample isLive request

Sample isLive response

Response xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="

STORK-VIDP-WS.xsd ">

 <!--Element RequestControl is mandatory-->

 <RequestControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ReqesutControl>

<!--Element ResponseControl is mandatory-->

 <ResponseControl>

<TransactionID>Trans 2002-10-10T12:</TransactionID>
<CreateTimeStamp>2002-10-10T12:00:00-05:00</CreateTimestamp>

<ValidStartTimeStamp>2002-10-10T12:00:00-05:00</ ValidStartTimeStamp >

<ValidEndTimeStamp>2002-10-10T12:00:00-05:00</ ValidEndTimeStamp >

</ResponseControl>

 <Status>0</Status>

</PingResponse>

Table 23: Sample isLive Response

3.5 SP-MW Adapter AT (Web)

The Austrian SP-MW Adapter offers service providers a web interface to start an authentication

request by simply using URL parameters. Additionally, this adapter offers a template for country

selection. The authentication process is started by transferring the URL request into a SAML

AuthnRequest and sending the request to the VIDP. The actual user authentication is still done by

the Austrian middleware MOA-ID. The adapter is only invoked again when the SAML

authentication data is ready to be retrieved. After successful authentication a MOA-ID assertion is

constructed. For this assertion a SAML artifact is generated and transmitted to the calling SP for

assertion retrieval. This adapter enables Austrian legacy applications to provide a secure

authentication of foreign citizens.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 28 of 75

An authentication process can be started by simply calling a URL. Such a URL should consist of

the following parameters:

URL parameter (mandatory)

Name Range Description

SPID
String ID of the Service Provider

OA
anyURI URL of the SP to which the user should be

redirected after successful authentication

Table 24: Mandatory parameters in the URL for the AT SP MW adaptor

URL parameter (optional)

Name Range Description

QAALevel
1 to 4 Desired authentication level

CCC
Two-digit ISO country

code

Country code of a citizen’s home country. If not

provided, a country selection page will be

displayed.

AttributeList
Format:

attrName,isRequired,v

alue;

Additional attributes to eID, first name, last name,

date of birth, nationality code according to section

7.2 of deliverable D.5.8b (only suffix)

isRequired: true or false

value: base value

Separation between attributes with ―;‖

Target
String Sector, only required for AT authentication

Template
anyURI Optional HTML template for MOA-ID

authentication

bkuURI
anyURI URL of the client middleware to be used

Table 25: Optional parameters in the URL for the AT SP MW adaptor

Sample URL:

http://localhost:8080/moa.stork.web/STORKStartAuthentication?

SPID=SP-AT&OA=http://localhost:8082/moa-id-proxy/&

Target=Test&QAALevel=4&AttributeList=age,false;isAgeOver,false,16

If no citizen country is provided, a country selection page will be displayed.

The optional parameters ―QAALevel‖ and ―AttributeList‖ can also be specified in the

configuration of this module.

3.6 V-PEPS/V-SP (Web)

The V-PEPS module receives requests from an S-PEPS and forwards it to the VIDP which in turn

determines the SPWare to invoke. Additionally, information received from the VIDP must be

converted to browser responses.

3.6.1 Process Flow

The V-PEPS module has to cope with two different situations which are described in detail below.

Situation 1 describes the processing after an S-PEPS has forwarded a SAML AuthnRequest

(which needs to be compliant to the message format defined in D5.8.3b [4]) to the VIDP for

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 29 of 75

authenticating a MW citizen. The validity of the SAML AuthnRequest must be verified and the

appropriate national module needs to be called. Situation 2 describes the processes after being

returned from the national MW module (currently the Austrian and German SPWare). In that

situation the V-PEPS module calls the VIDP to retrieve citizen’s authentication data and returns

them to the requesting S-PEPS.

Situation 1:

 Receipt of SAML AuthnRequest via HTTP Post

 Decoding of SAML AuthnRequest

 Validation of SAML AuthnRequest

o Validate format (XML syntax)

o Validate digital signature

o Validate format of SAML AuthnRequest

o Validate contents of SAML AuthnRequest elements and attributes

 Calling VIDP with SAML AuthnRequest

 Return browser response received from VIDP

Situation 2 (return from German or Austrian SPWare, not PEPSConnector):

 Receipt of HTTP GET Request with parameters sessionID and citizen country code

 Calling VIDP with parameters

 Return SAML response as HTTP Post to the user’s browser

3.7 PEPSConnector

The so-called PEPSConnector is a special implementation of the SPWare interface and is

responsible for handling authentication request and response messages between a VIDP and a C-

PEPS. The PEPSConnector itself can be seen as two layer architecture, one layer handling web

requests and thus building the front-end layer whereas the back-end layer is responsible for

handling the business logic.

3.7.1 Back-End

The back-end of the PEPSConnector module implements the methods of the SPWare Interface

(see Table 26 for details).

Methods Description Comments

startAuthentication Called by the VIDP to send an authentication request

to the appropriate C-PEPS

getAuthenticationData Called by the VIDP to retrieve authentication data

from a C-PEPS

Table 26: Description of PEPSConnector Methods

3.7.1.1 Process Flow

3.7.1.1.1 startAuthentication

The following actions of the PEPSConnector must be carried out within this method:

 Receive SAML2 AuthnRequest object from VIDP

 Locate foreign C-PEPS and fill in missing values in the request (destination, etc.)

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 30 of 75

 Get signing credentials and sign the request

 Include request in HTML page according SAML specification

 Store sessionID in connection with AuthnRequest

 Return HTML page as byte stream

3.7.1.1.2 getAuthenticationData

This method is responsible for processing the following steps:

 Get sessionID from VIDP

 Fetch response

 Return SAML response

3.7.2 Front-End

The PEPSConnector Front-End defines the web interface to the C-PEPS for receiving appropriate

SAML response messages.

3.7.2.1 Process Flow

The following actions must be performed after having received a SAML response message from a

C-PEPS:

 Validate response and assertion

 Store response in connection with session

 Redirect user to the actual calling module (plug-on) given the URL in the session

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 31 of 75

4 Application, Modules and Packaging

To allow for more flexibility in deployment and maintenance this chapter describes the

deployments and packaging approach. It provides the deployment strategies, various applications,

modules and packaging. Some major considerations are:

 Options to integrate a SPWare into a VIDP at runtime

 The integration layer should have minimal effort in implementation. In best case code

generation tools can handled since no business logic is included in this artefact.

 More effort with configuration than coding

 Completely decouple modules from each other through the use of modules termed APIs

giving room for a dynamic approach in deployment. A module can be moved from one

application to another or from one system to another without breaking down the

application functionality at runtime. Each module should be able to handle local, remote

(EJB) and web service integration using just one defined interface (POJO-local).

 Each SPWare client is encapsulated in an EJB module containing a stateless session to

address performance issues as well. The VIDP can maintain specific number of open

connections to a specific SPWare by using the non-transaction, stateless session beans.

During their creation, web service port instance of a SPWare client is created. They also

handle issues like transaction timeouts.

4.1 Applications

These are J2EE applications that can be deployed1 on same virtual machine, same application

server or different virtual machines.

The figures below show different deployment options. Due to the modular approach other

deployment options are possible. Such a deployment option could be deployment on one single

application server. It shows dependencies within artefacts in the application as well as direct

application dependencies. Please note that the SPWares always have to be in a separate

application, but can be deployed on the same application server.

1 Note that due to missing serializing functionality of OpenSAML library, a distributed deployment across

different application servers or even machines is currently not possible. This means that for the time being

the V-IDP needs to be installed completely inside one application server.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 32 of 75

Figure 4: Architecture of STORK Middleware. Deployment on single application server as three applications.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 33 of 75

Figure 5: Deployment of applications on different systems. New Plug-ons/in package

and deployed as new applications

Figure 6: Deployment of applications on different systems (persistenceService together

with VIDP). New Plug-ons/in package within existing VIDP and SPWare

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 34 of 75

Figure 7: Deployment of applications on different systems. New Plug-ons/in package within existing VIDP and

SPWare

Name Description Comments

VIDP contains modules for VIDP implementation, VIDP-

SPEPS, VIDP-WS and SPWare clients as well as

PEPSConnector

SPWare Contains implementation of SPWare web service

for each Member State

VIDPServices Contains remote services accessible by both VIDP

and SPWare such as SessionManager,

OptionModelService, and PersistenceServices

MWSecurityGateway An application service that will handle security

issues like transport and message security, policy

enforcement point, validations, authorization to

framework and ...)

Comments

Table 27: Sample Applications

4.2 Modules

Name Description

VIDP-EJB Contain local, stateless implementation of VIDP as well as the

service locator for dynamically discovering and calling SPWare

clients and PEPSConnectors

VIDP-WS-EJB Contains the enterprise web service implementation of VIDP-WS

VIDP-V-SPEPS-WEB Contains implementations that communicates with the S-PEPS as

well as implementation that handles responses from Middleware

Clients (e.g. BKU or BürgerClient)

VIDP-API This module holds all interfaces and exceptions using the Austrian

extension to OpenSAML for all uses of STORKAuthnRequest and

STORKResponse. It acts as common module for VIDP-EJB,

VIDP-WS-EJB, and VIDP-V-SPEPS-WEB

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 35 of 75

VIDP-SPWare-Client-Germany-

EJB

Contains a local stateless, none transaction session implementation

that encapsulates the German SPWare client. It could be plug-in at

anytime hence use of service locator to discover it.

VIDP-SPWare-Client-Austria-

EJB

Contains a local stateless, none transaction session implementation

encapsulates the Austria SPWare client. It could be plugged-in at

anytime hence use of service locator to discover it.

VIDP-PEPSConnector-WEB Handles responses from C-PEPS.

VIDP-SPMWAdapter-WEB This module provides a web interface for Austrian legacy

applications to support STORK authentication functionality.

Table 28: Description of VIDP Modules

Name Description Comments

VIDP-SPWare-Germany-EJB Contain local, stateless implementation of the

German SPWare that handles the mapping and

dispatching of request to eID-Service. It also

contains an enterprise web service implementation

of the SPWare that interacts with the VIDP with it

corresponding handlers

VIDP-SPWare-Austria-EJB Contain local, stateless implementation of the

Austria SPWare that handles the mapping and

dispatching of requests to MOA-ID.

VIDP-SPWare-AT-Web The web interface the user is redirected to after

having been successfully authenticated by MOA-ID

VIDP-PEPSConnector-EJB Processes the response from C-PEPS as well as

determines the correct C-PEPS for sending the

STORKAuthnRequest to.

Comments

Table 29: Description SPWare Application Modules

Name Description Comments

VIDP-Service-EJB Contains remote session management

implementation, option model, as well as

persistence service

Comments

Table 30: Description of Service Application Modules

Name Description Comments

MW-Util-API Contains Utility classes such timestamp generators,

Attributes Mapper, and Interceptors

MW-Exception-API Contains platform standard error handling concept.

All other modules that offer external exceptions

must extend the MWBusinessException

MW-Messages-API Contains messages required by plug-ins/ons such

as STORKAuthRequest

STORKSAMLEngine Contains all SAML related elements and utilities
VIDP-SPWare-API Contains interfaces, exception and messages as well

as utilities

LogService Use for logging in/out bound messages

Table 31: Description of Common Modules

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 36 of 75

4.3 Packages

4.3.1 VIDP-API Module

Package Name Description

eu.stork.vidp.api.interfaces Holds interfaces like SPWare, VIDP (local), VIPD-WS (Remote

interface), persistence services, PEPSConnectors and Service

Locator, etc

eu.stork.vidp.api.exception All exceptions returned by any MW component

eu.stork.vidp.api.message All in/out messages consumed or sent by any MW component

eu.stork.vidp.api.messages.saml Extension to SAMLRequest/Response

eu.stork.vidp.api.util Utility and helper classes accessed by most VIDP components

Table 32: Packages in VIDP-API Module

4.3.2 VIDP-EJB

Package Name Description

eu.stork.vidp.impl.vidp Holds VIDP implementation as stateless session bean

eu.stork.vidp.impl.spwareclient Holds Service Locator implementation

Table 33: Packages VIDP-EJB Module

4.3.3 VIDP-WS-EJB

Package Name Description

eu.stork.vidp.impl.ws Holds VIDP-WS implementation as stateless enterprise web

service

Table 34: Packages in VIDP-WS-EJB Module

4.3.4 VIDP-V-SPEPS-WEB

Package Name Description

eu.stork.vidp.impl.web.vpeps Holds servlets and any other required classes that receive and

process requests from S-PEPS

Table 35: Packages in VIDP-V-SPEPS-WEB Module

4.3.5 VIDP-PEPSConnector-WEB

Package Name Description

eu.stork.vidp.impl.web.pepsconnector Holds servlets and any other required classes that receive

and process responses from C-PEPS

Table 36: Packages in VIDP-PEPSConnector Web

4.3.6 VIDP-SPWare-Client<CountryName>-EJB

Package Name Description

eu.stork.vidp.spwareclient.impl. Holds stateless, session implementation of a branded SPWare

interface. It doesn’t implement directly the SPWare interface but

its local interface must extend the SPWare interface

eu.stork.vidp.vidp.spwareclient.impl

.client

Holds clients generated stubs of SPWare web service

implementation

Table 37: Packages in VIDP-SPWare-Client<CountryName>-EJB Module

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 37 of 75

4.3.7 VIDP-Services

Package Name Description

eu.stork.vidp. impl.persistence.entities Holds all persistence entities within the VIDP

eu.stork.vidp.impl.persistence.service Holds implementations that provides services to

persistence

eu.stork.vidp.impl.services Holds remote service implementations like

session service, option model etc

Table 38: Packages in VIDP-Services Module

4.3.8 VIDP-SPWare-API

Package Name Description

eu.stork.vidp.spware.api.interfaces Holds interfaces like SPWare,

eu.stork.vidp.spware.api.exception All exceptions returned by SPWare

eu.stork.vidp.spware.api.message All in/out messages consumed or sent by any SPWare

component

eu.stork.vidp.spware.api.messages.saml Extension to SAMLRequest/Response

eu.stork.vidp.spware.api.util Utility and helper classes accessed by most SPWare

components

Table 39: Packages in VIDP-SPWare-API Module

4.3.9 VIDP-SPWare-<CountryName>-EJB

Package Name Description

eu.stork.vidp.spware.impl Holds local stateless implementation of SPWare. Direct

implementation of SPWare interface is not allowed. Every MS

should have a branded SPWare interface. Therefore an extension

of the SPWare interface is made.

eu.stork.vidp.spware.impl.ws Holds enterprise web service implementation of the SPWare that

receives and forwards calls to the local stateless implementation

Table 40: Packages in VIDP-SPWare-<CountryName>-EJB

4.3.10 VIDP-PEPSConnector-EJB

Package Name Description

eu.stork.vidp.pepsconnector.impl Implements the back-end functionality of the PEPSConnector

Table 41: Packages in VIDP-PEPSConnector-EJB

4.3.11 SAML Engine

Package Name Description

eu.stork.vidp.messages.saml Extensions for STORK to SAML elements

eu.stork.vidp.messages.saml.impl Implementation of SAML extensions

eu.stork.vidp.messages.stork STORK specific message elements

eu.stork.vidp.messages.stork.impl Implementation of STORK specific elements

eu.stork.vidp.messages.util Utitly classes for e.g. constructing STORK SAML messages

Table 42: Packages in SAML Engine

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 38 of 75

5 Security Concept

The general security principles documented in D5.8.3d [6] are the foundation of all designs and

developments performed in STORK, thus also for the V-IDP. This chapter discusses security

issues concerning the V-IDP and the implemented approach.

5.1 Authentication and Authorization at VIDP

The following will need to authenticate themselves at STORK MW (VIDP)

 SP

 S-PEPS

 C-PEPS

Two authentication approaches can be followed:

 Do authentication before sending functional message.

This could require simple password authentication or mutual authentication (using PKI).

This approach is not used in STORK, thus there is no need for details here.

 Send authentication credentials within the functional message.

This might require password authentication or usage of other SP unique properties

transmitted within the message. At the moment STORK supports SP unique properties

like SPID.

5.2 Message Security

In- and outbound messages will need to be signed and encrypted by all systems integrated by

VIDP. Since the VIDP acts as a gateway providing services to many SP and S-PEPS, this leads to

four major nodes that will require message security. These nodes include:

1. S-PEPS-VIDP (encryption: currently not supported on the message level2. Encryption

needs to be performed on the transmission layer, e.g. SSL)

2. SP-VIDP (encryption: supported, optional)

3. VIDP-C-PEPS (encryption: currently not supported on the message level. Encryption

needs to be performed on the transmission layer, e.g. SSL)

4. VIDP-SPWare (Webservice-Interface) (encryption: supported, optional)

For item 1 and 3 it will be followed the defined STORK message security approach. For item 2

and 4 there is no real message security approach.

Deviations

 Germany

In the case of the eID-Service whose message security approach has no consideration of a

broker/gateway approach, special care must be undertaken to directly integrate the current

state of the eID-Service to STORK. SP message security credentials are mapped directly

within the eID-Service. A message from SP to eID-Service will pass two nodes with

2 The V-IDP supports SAML encryption, but the STORK interface specification does not make use of that

feature due to existing legal requirements in some countries.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 39 of 75

message security (SP-VIDP and VIDP-EID-Service). For the communication between SP

and VIDP, the VIDP operator needs to agree on the message security credentials with the

SP. In addition, the SP message security credentials towards the eID-Service must be

handled by the V-IDP instead of the SP. The V-IDP operator thus needs to have a trust

relationship with the SP as well as with the eID-Service. The SP needs to entrust the

message security handling to the V-IDP and the eID-Service must be made aware that he

will have the V-IDP as its communication partner instead of the SP. This includes at least

the so called token certificates. Details about the needed configuration for an SP to

perform authentication with a German citizen can be obtained from the installation and

configuration manual of the V-IDP [12].

 Austria

For communication with the national Austrian middleware modules message security is

achieved via transport level security (SSL/TLS).

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 40 of 75

6 Codes and Attributes (VIDP-WS and VP)

This section presents the various codes used in controlling the authentication process.

6.1 Status (VIDP-WS)

Code Message Description

0 Success Authentication was successful

1 Failed Authentication failed

2 Pending Authentication is still in processing (Not supported at the

moment)

Table 43: Status (VIDP-WS)

6.2 Error Codes

Previously, the STORK error codes were quite few. We follow the approach of providing as

detailed and quite distinct error codes to clients. This will require allots of error codes which can

be realised through categorization as well as modular levels. In an upcoming version, the error

codes shall be harmonized with the newly updated STORK error codes list which is now at a

comparable level of detail.

The following list includes the internal V-IDP error numbers, which are mapped to the generic

STORK error numbers.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 41 of 75

Error

Code

Message Description Client’s

reaction

 Session and SP related error codes

100 Invalid SessionID Invalid SessionID 3

101 SessionID not Found No SessionID found 6

102 Session Ended Session in End state 6

103 Missing SessionID Parameter Missing SessionID Parameter in request 6

104 Missing SessionID Parameter Value End User SessionID Parameter has value 3

105 Invalid SPID Invalid SessionID 3

107 Missing SPID Parameter Missing SPID Parameter in request 6

108 Missing SPID Parameter Value End User SPID Parameter has value 3

109 Invalid TransactionID Invalid TransactionID 3

110 TransactionID not Found TransactionID not found 6

111 Transaction Ended Transaction in finished state 6

112 Invalid Country Invalid Country 3

113 Country not Found No Country found 6

114 Missing Country Parameter Missing CountryParameter in request 6

115 Missing Country Parameter Value End User Country Parameter has value 3

117 Invalid Assertion Consumer URL not Found No Assertion Consumer URL found 6

118 Missing Assertion Consumer URL Parameter Missing Assertion Consumer URL Parameter in
request

6

119 Missing Assertion Consumer URL Parameter Value End User Assertion Consumer URL Parameter has

request

3

120 Invalid Domain Name Invalid Domain Name 3

121 Missing Domain Name Parameter Missing Domain Name Parameter in request 6

122 Missing Domain Parameter Value Missing Domain Name Parameter has value 3

123 Missing Application Name Parameter Missing Application Name Parameter in request 6

124 Missing Application Name Parameter Value End User Application Name Parameter has value 3

125 Invalid Application Name Invalid Application Name

126 Invalid STORK Attribute Name Parameter Invalid STORK Attribute Name 6

127 Missing STORK Attribute Parameter Value Missing STORK Attribute Name Parameter has

value

3

128 Missing STORK Attribute parameter Missing STORK Attribute Name Parameter in

request

6

129 Missing STORK Assertion Parameter Value Missing STORK Assertion Parameter has value 3

130 Missing STORK Assertion parameter Missing STORK Assertion Parameter in response 6

131 Missing issuerURL Parameter Missing issuerURL Parameter in request 6

132 Missing issuerURL Parameter Value End User issuerURL Parameter has value 3

133 Invalid issuerURL No issuerURL found 6

134 Missing timestamp Parameter Missing timestamp Parameter in request 6

135 Missing timestamp Parameter Value End User timestamp Parameter has value 3

136 Invalid timestamp Invalid timestamp 6

 S-PEPS

152 S-PEPS not Found S-PEPS not found

153 S-PEPS not enabled S-PEPS not in enabled state

 C-PEPS

161 Invalid C-PEPSID No matching with adopted pattern

162 C-PEPS not Found C-PEPS not found

163 Missing C-PEPSID Parameter Request has not C-PEPS parameter

164 Missing C-PEPSID Value C-PEPS parameter has not value

165 Failed connection to C-PEPS Failed connection to C-PEPS

166 C-PEPS General Application Error C-PEPS General Application Error

167 Failed Authentication to C-PEPS Failed Authentication to C-PEPS

 SPWare

168 Unkonw SPWare Unkonw SPWare

169 Not Enabled SPWare Not Enabled

170 Can’t connect to SPWare Can’t connect to SPWare

172 SPWare Configuration Error SPWare Configuration Error

 SPWare-Memberstate IDP

176 Failed connection to MS-IDP Failed connection to MS-IDP (eg. IDService)

177 Application error from MS-IDP Application error from MS-IDP

178 SPWare-MS IDP Connection timeoutand MS-IDP SPWare-MS IDP Connection timeoutand MS-IDP

179 MS IDP General Application Error MS IDP General Application Error

180 Invalid MS IDP URL Configured URL is Invalid

 MS IDP-Client (BC)

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 42 of 75

Error

Code

Message Description Client’s

reaction

185 MS-IDP-BC Connnection timout between IDP and
BC

MS-IDP-BC Connnection timout between IDP

186 BC can’t connect to MS IDP BC can’t connect to MS IDP

187 BC is not started BC is not started

188 User cancelled authentication User cancelled authentication

189 User denied attribute retrieval User denied attribute retrieval

 SP Account related error codes

200 Invalid SP Account SP pattern is used else default pattern 3

202 Invalid Password Password invalid 3

203 Account not Found Account not found 6

204 Blocked Account Account in blocked state 6

205 Disabled Account Account in disabled state 6

206 Deactivated Account Account in deactivated state 6

207 Suspended Account Account in suspended state 6

208 Deleted Account Account in deleted state 6

209 Missing Username Parameter Missing Username Parameter in request 3

210 Missing Password Parameter Missing Password Parameter in request 3

211 Missing Username Parameter Value Username Parameter has no value 3

212 Missing Password Parameter Value Password Parameter has no value 3

213 Unsupported Account State Account state not defined in Spec 4

 General Communication

 General Communication error codes

300 Invalid request Request is general invalid based on technical spec 3

301 Missing Parameter Missing parameter is request 3

302 Invalid Parameter Included parameter not supported by the API 3

303 Missing Parameter Value Parameter has not value 3

304 General API Error General API 1

305 Service not available Service not reachable 1

306 Invalid Timestamp Timestamp not supported 4

307 Missing Timestamp Parameter No timestamp element in request 3

308 Invalid TransactionId Invalid transactionId 4

309 Missing TransactionId Parameter Missing TransactionId Parameter 3

310 Invalid Policy Version Invalid policy version. Not supported by

SPAuthenticationService

1

311 Missing Policy Version Parameter No policy version element in request 3

312 Missing Version Parameter Value No policy version value in version element missing 3

 Invalid PolicyURL Invalid PolicyURL 3

 Missing PolicyURL Parameter Missing Policy URL Parameter 3

 Missing PolicyURL Parameter Value Missing Policy URL Parameter Value 3

 Authentication and Authorization by SP at Middleware

400 SP Failed Authentication General authentication failed 1

401 SP Failed Authorization General authorization failed 1

402 SP not Found SP not found 1

403 SP Restriction to Service SP not allowed to use the service called 2

404 SP Restriction to Service Method SP not allowed to use the service method called 2

405 Missing SP URL for Notifications No SP notification URL configured 1

407 Access Denied Access denied 1

 PEPSConnector

 MG and its Component

600 CCC not specified No citizen country code specified 3

601 PEPS country not supported PEPS country not supported 6

602 No PEPS destination found No PEPS destination found 1

603 No AssertionConsumerService URL found ACS URL of PEPSConnector not defined 1

604 No issuer name for PEPSConnector configured PEPSConnector issuer name not configured 1

605 Error signing request Credentials for signing AuthnRequest not found or

signing error

1

606 Error building StartAuthResponse StartAuthResponse cannot be built 1

607 C-PEPS unknown C-PEPS unknown 3

608 C-PEPS response not valid C-PEPS response not valid 6

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 43 of 75

Error

Code

Message Description Client’s

reaction

609 C-PEPS assertion not valid C-PEPS assertion not valid 6

610 No response stored for sessionID No response stored for sessionID 0

 SPWare AT

 MG and its Component

700 Error providing BKU selection page Error providing BKU selection page 1

701 Error retrieving authentication data from MOA-ID Error retrieving authentication data from MOA-ID 1

702 Error building STORK response Error building STORK response 1

 VIDP and Resources

 MG and its Component

900 Transaction Timeout Transaction timeout 1

901 Internal Error Internal VIDP error 1

902 VIDP Error VIDP application error 1

Table 44: Error Codes

Clients Reaction

Code
Description

0 Try Again

1 Call VIDP Support 0049 ******32

2 Contact VIDP Customer Service 0049 ******31

3 Try Again with right parameters and value

4 See VIDP-WS API Specification Document

5 No reaction

6 No Retry

Table 45: Clients Reaction Code

6.3 Current Supported Attributes by eID-Service

These attributes are not to be maintained within this specification. To have a full understanding of

it the BSI TR-03110 of the Personalausweis should be consulted.

Attribute Name Data group or

Function

Content of Attribute value Type of Attribute

Value in

Authentication

response

Type of Attribute

Value in

Authentication

request

DocumentType DG1 Dokumententyp,

„ID― für nPA

string -

IssuingState DG2 Ausgebender Staat,

„D― für Deutschland

string -

DateOfExpiry DG3 Ablaufdatum string -

GivenNames DG4 Vornamen string -

FamilyNames DG5 Familienname(n) string -

ArtisticName DG6 Ordensname/

Künstlername

string -

AcademicTitle DG7 Doktorgrad string -

DateOfBirth DG8 Geburtsdatum string -

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 44 of 75

Attribute Name Data group or

Function

Content of Attribute value Type of Attribute

Value in

Authentication

response

Type of Attribute

Value in

Authentication

request

PlaceOfBirth DG9 Geburtsort string -

PlaceOfResidence DG17 Adresse string -

RestrictedIdentificati

on

Restricted

Identification

Sektorspezifische Kennung

(Pseudonym)

string -

CommunityIdVerfica

tion

Community ID

Verification

Ergebnis bzw. Anfragewert

der Vergleichsfunktion

Wohnortabfrage (amtlicher

Gemeindeschlüssel)

string xs:string .

AgeVerification Age

Verification

Ergebnis bzw. Anfragewert

der Vergleichsfunktion

Altersverifikation

string xs:string .

DocumentValidity Gültigkeits-

prüfung

2)

Ergebnis der

Gültigkeitsprüfung des

Dokumentes

string -

Comments The following attributes (CommunityIdVerification, AgeVerification, DocumentValidity) for simplicity

should be used as QueryAttribute if information concerning them has to be transmitted. Otherwise other
attributes uses NormalAttributes during initAuthentication

Table 46: Current Supported Attributes by eID-Service

Attribute Condition

Attribute

Condition

Description Comments

Mandatory Indicates that provision of requested attribute is mandatory to

end-user

Very important for SP

flow

Optional Indicates that provision of requested attribute is optional to

end-user

Table 47: Attribute Condition

6.4 DE eID-Service STORK Attributes3 Mapping

Some clarification is needed at STORK level before filling this table. Moreover it will require a

working session between persons with good mastering in eID-Service attributes as well those with

STORK attributes. Any wrong mapping will lead to a malfunctioning of the system. The table

below presents a proposed mapping based on the document provided by STORK. However, a

future review by all parties is required an additional table: eID-Service STORK Attributes

Mapping.

eID-Service Attribute Name STORK Attribute

DocumentType N/A

IssuingState N/A

DateOfExpiry N/A

GivenNames givenName

FamilyNames surname

3 For a complete list and description of attributes, see [1]

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 45 of 75

ArtisticName pseudonym

AcademicTitle title

DateOfBirth dateOfBirth

PlaceOfBirth N/A

PlaceOfResidence textResidenceAddress

RestrictedIdentification eIdentifier

CommunityIdVerfication N/A

AgeVerification isAgeOver

DocumentValidity N/A

General mapping comments As can be seen above, there are a list of attributes which

cannot be mapped to STORK attributes. Currently, these

are not forwarded when sent over the V-PEPS plug-on.

Table 48: Service STORK Attributes Mapping

6.5 AT STORK Attributes Mapping

This section describes the mapping of the attributes delivered by the Austrian middleware MOA-

ID to the attributes defined by STORK. MOA-ID only issues a certain amount of user attributes

thus not all STORK attributes can be supported. Table 49 illustrates this mapping.

MOA-ID Attribute Name STORK Attribute

NameIdentifier http://www.stork.gov.eu/1.0/eIdentifier

GivenName http://www.stork.gov.eu/1.0/givenName

FamilyName http://www.stork.gov.eu/1.0/surname

DateOfBirth http://www.stork.gov.eu/1.0/dateOfBirth

Table 49: MOA-ID STORK Attributes Mapping

6.6 Attribute Status

These are status codes specifically for any attribute requested by the SP. Currently, the eID-

Service does not support such status attributes at individual attribute scope rather global at request

level.

Code Message Description

0 Success Attribute successfully retrieved

1 Failed No reason provided

2 SP not authorised SP does have read access to the attribute. Not yet supported, 1 will be

returned

3 End user denied End user refused retrieval of attribute. Not yet supported, 1 will be

returned

4 Attribute not

supported

End user does not have the requested attribute. Not yet supported, 1

will be returned

Table 50: Attribute Status

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 46 of 75

7 Persistence

For the Middleware to function properly there is a need to configure the system based on the

contract with respective systems such as S-PEPS, C-PEPS and SP. Other configurations such as

options are used to manage runtime issues such as switching the system to a staging or live

system as well as managing sessions. The following sections provide a detailed description of

these tables.

7.1 State Table

ID Value Description

1 Enabled Entry is active. Only domain objects with this state can be read on runtime.

2 Disabled Entry is not active. Entry can be changed to Enabled state again.

3 Deleted State can never be changed to active state again, so it can later be deleted completely.

4 Inactive Any newly configured object that requires validation or approval or longtime

configuration should by default have this state.

Table 51: State Table

7.2 SP

Holds Information for SPs. Default values may be configured and will thus lead to an automatic

inclusion of this parameter if omitted in the request (optimization reasoning).

Name Description Type Default

SPID Identifies an SP that can use

VIDP

Varchar, not

null Unique,

primary key

Values from Sequence

named SEQ_SP

DomainName Indicates domain of an SP Int, not null,

unique

ApplicationName Indicates the human readable

application name of an SP

Varchar, not

null

StateID Indicates state of the SP.

Reference to state table.

Int, not null

CountryID Indicates country of SP.

References the Country table

Int, not null

AssertionConsumerServi

ceUrl

Indicates the URL where

UserAgent (eg. AusweisApp)

can redirect to SP after

connecting to SPWare (eID-

Service)

Varchar, not

null

Optional, may serve as

additional security check

if used to compare to

attribute in AuthnRequest

PubSignCert SP’s certificate used by

VIDP to validate all SPs’

signed requests

Varchar, null Null, can be sent during

request

Pub EnryptCert SP’s certificate used by

VIDP to encrypt all SPs’

responses

Varchar, null Null, can be sent during

request

PrSignCert SP’s certificate used by

VIDP to sign all SPs’

responses

Varchar, not

null

PrEncryptCert SP’s certificate used by

VIDP to decrypt all SPs’

requests

Varchar, not

null

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 47 of 75

Name Description Type Default

MaxRequestPerMinute Number of request per

minute to handled DDOS

(conversations or Requests?)

Varchar, not

null

5

CreatedBy Holds name of person who

created that entry

Varchar, not

null

DateCreated When this SP was created timestamp

NULL default

NULL

Null (since SP are created

by persistence layer this

value will never be null

else is a faked one)

ModifiedBy Holds name of person who

last modified that entry

Varchar, null Null

LastModified When this SP was last

modified

Timestamp,

null

CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

Table 52: SP Configuration

7.3 S-PEPS

Holds Information for S-PEPS

Name Description Type Default

ID Identifies an S-PEPS that can

use VIDP

Varchar, , Not

null Unique,

primary key

Values from Sequence

named SEQ_SPEPS

Name Indicates domain of an SP Int, not null,

unique

AssertionConsumerSer

viceUrl

Indicates the URL where VIDP

can redirect responses from

SPWare to S-PEPS

Varchar, not

null

CountryID Indicates country of S-PEPS.

References the Country table

Int, not null

PubSignCert S-PEPS certificate used by

VIDP to validate its signed

requests

Varchar, not

null

Pub EnryptCert S-PEPS’s certificate used by

VIDP to encrypting its

responses (currently not

supported)

Varchar, not

null

PrSignCert SPEPS’s certificate used by

VIDP to sign all S-PEPSs’

responses

Varchar, not

null

PrEncryptCert S-PEPS’s certificate used by

VIDP to decrypt all S-PEPSs’

requests (currently not

supported)

Varchar, not

null

StateID Indicates state of this SP.

References the State table

Int, not null

CreatedBy Holds name of person who

created that entry

Varchar, not

null

DateCreated When this SP was created timestamp

NULL default

NULL

Null (since SPEPS are

created by persistence

layer this value will never

be null else is a faked

one)

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 48 of 75

Name Description Type Default

ModifiedBy Holds name of person who last

modified that entry

Varchar, null null

LastModified When this SPEPS was last

modified

Timestamp,

null

CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

ServiceProviderIssuer

URL

The issuer name of the S-PEPS Varchar, not

null

Table 53: PEPS Configuration

7.4 C-PEPS

VIDP uses this table when communicating with C-PEPS.

Name Description Type Default

ID Identifies an C-PEPS

that can use VIDP

(issuer element)

Varchar, , Not

null Unique,

primary key

Values from Sequence

named SEQ_CPEPS

Name Indicates domain of an

C-PEPS

Int, not null,

unique

CPEPSURL Indicates the URL of the

C-PEPS where VIDP

can forward request

Varchar, not null

CountryID Indicates country of C-

PEPS. References the

Country table

Int, not null

PEPSConnector Hold className for the

PEPSConnector

implementation.

Int, not null

PubSignCert C-PEPS certificate used

by VIDP to validate its

signed responses

Varchar, not null

Pub EnryptCert C-PEPS’s certificate

used by VIDP to

encrypting its requests

(currently not supported)

Varchar, not null

PrSignCert C-PEPS’s certificate

used by VIDP to sign all

the C-PEPSs’ responses

Varchar, not null

PrEncryptCert C-PEPS’s certificate

used by VIDP to decrypt

all the C-PEPSs’

requests (currently not

supported)

Varchar, not null

Version Indicates version of the

C-PEPS implementation

Int, not null 1

StateID Indicates state of this C-

PEPS. References the

State table

Int, not null

CreatedBy Holds name of person

who created that entry

Varchar, not null

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 49 of 75

Name Description Type Default

DateCreated When this SP was

created

timestamp

NULL default

NULL

Null (since CPEPS are

created by persistence

layer this value will never

be null else is a faked

one)

ModifiedBy Holds name of person

who last modified that

entry

Varchar, null null

LastModified When this CPEPS was

last modified

Timestamp, null CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

ServiceProviderIssuerURL The issuer name of the

C-PEPS

Varchar, not null

Table 54: C-PEPS Configuration

7.5 SPWare

Holds information for the SPWare

Name Description Type Default

ID

Identifies of a SPWare Varchar, , Not null

Unique, primary

key

Values from Sequence

named SEQ_SPWare

CountryID Indicates country of SPWare.

References the Country table

Int, not null

StateID Indicates state of this

SPWare. References the State

table

Int, not null

CreatedBy Holds name of person who

created that entry

Varchar, not null

DateCreated When this SPWare was

created

timestamp NULL

default NULL

Null (since SPWare are

created by persistence

layer this value will never

be null else is a faked one)

ModifiedBy Holds name of person who

last modified that entry

Varchar, null null

LastModified When this SPWare was last

modified

Timestamp, null CURRENT_TIMESTAMP

on update

CURRENT_TIMESTAMP

Table 55: SPWare Configuration

7.6 PEPSConnector

Holds information for the PEPSConnector.

Name Description Type Default

ID

Identifies the

PEPSConnector

(issuer)

Varchar, , Not

null Unique,

primary key

AssertionConsumerServiceURL URL where

PEPSConnector

wants to receive C-

PEPS responses

Varchar, not

null

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 50 of 75

Name Description Type Default

StateID Indicates state of the

PEPSConnector.

References the State

table

Int, not null

CreatedBy Holds name of

person who created

that entry

Varchar, not

null

DateCreated When this

PEPSConnector was

created

timestamp

NULL default

NULL

ModifiedBy Holds name of

person who last

modified that entry

Varchar, null null

LastModified When this

PEPSConnector was

last modified

Timestamp,

null

CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

Table 56: PEPSConnector Configuration

7.7 STORKMemberStates

Holds information for all Member States integrated with the VIDP

Name Description Type Default

CountryID

Identifies a country Varchar, , Not

null Unique,

primary key

Values from Sequence

named SEQ_Country

Name Name of country Int, not null

StateID Indicates state of this country

entry. References the State table

Int, not null

CreatedBy Holds name of person who

created that entry

Varchar, not

null

DateCreated When this country entry was

created

timestamp

NULL default

NULL

Null (since Country entry

is created by persistence

layer this value will never

be null else is wrongly

created)

ModifiedBy Holds name of person who last

modified that entry

Varchar, null null

LastModified When this country was last

modified

Timestamp,

null

CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

Table 57: STORKMemberStates Configuration

7.8 Session

Holds session information during a complete transaction (InitAuthentication and

getAuthenticationData). Contains information about all active sessions. In final state, the session

is deleted and copied to session history.

Name Description Type Default

SessionID Identifies the session Varchar, Not

null Unique,

primary key

Values from

Sequence named

SEQ_SESSION

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 51 of 75

Name Description Type Default

SPID SP identification. References

SP table

Int, Not null

TransactionID TransactionID used by

VIDPWS and SP (ID element

of SAML message)

Varchar, null Null

SPWareURL URL used during this session

to connect to a SPWare e.g.

eID-Service

Varchar , Not

null

SPWareRefreshURL Used to connect to SPWare

during getAuthenticationData

Varchar, null Null

S-

PEPSAssertionConsumerURL

Used during this session to

redirect response to S-PEPS

Varchar, null Null

C-PEPSURL Used during this session to

connect to C-PEPS

Varchar, null Null

SPAssertionConsumerURL Used during this session

where end user can send

request to SP which will then

call VIDP-WS to get

authentication data

Varchar, null Null

AuthProcessingStatusID Indicates the status of

authentication process.

0 =SUCESS, 1=FAILURE,

2=PENDING

Int, , Not null

Caller Indicates who the caller is

P=S-PEPS

S=SP

Char , Not null P

ForwardedTo Indicates where the call is

been forwarded:

C=C-PEPS

W=SPWare

Char, Not null W

RequestedAttributes The RequestedAttributes

subtree as appearing in the

StorkAuthnRequest

Varchar, Not

null

ResponseAttributes The Attributes element of the

Response message without the

values

Varchar, null

MaxNumberOfRetries Max number of retries for a

conversation for this specific

SP or SPEPS

Int, Not null 5

RetriesCount Number of retries for this

specific session

Int, Not null 0

PollingEnabled If polling to get authentication

data at SPWare (eID-Service)

or PEPSConnector is enabled

Boolean null

MaxPollingNumber Max number of polls for a

session at a SPWare (e.g. eID-

Service) or C-PEPS

Int , null

PollRetriesCount Number of times poll at

SPWare or C-PEPS within

this session

Int , null

FailureID STORK errorcode, holds

value only when an error

occured within VIDP or is

returned from SPWare. Or C-

PEPS It references

STORKErrorCode table

Int, null Null

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 52 of 75

Name Description Type Default

FailureMessage STORK error message. Holds

value only when an error

occurred within VIDP or is

returned from SPWare or C-

PEPS. It references

STORKErrorCode table

Varchar, null Null

SPWareErrorCodeID Reference SPWareErrorCode

table, and holds value only if

SPWare returned an error

Int , null Null

SPWareFailureComment Message returned by SPWare

giving reasons for failure.

Holds value only if SPWare

returned an error

Varchar, null Null

CPEPSErrorCodeID Reference STORKErrorCode

table, and holds value only if

C-PEPS returned an error

Int , null Null

CPEPSFailureComment Message returned by C-PEPS

giving reasons for failure.

Holds value only if C-PEPS

returned an error

Varchar, null Null

SPCertSig The certificate used to validate

SP request signature if session

was between SP.

Varchar, null

SPCertEnc The certificate used to encrypt

SP response if session was

between SP

Varchar, null

CPEPSCertSig The certificate used to validate

C-PEPS response signature if

session was between C-PEPS.

Varchar, null

CPEPSCertEnc The certificate used to encrypt

C-PEPS request if session was

between C-PEPS

Varchar, null

SPEPSCertSig The certificate used to validate

S-PEPS request signature if

session was between S-PEPS.

Varchar, null

SPEPSCertEnc The certificate used to encrypt

S-PEPS response if session

was between S-PEPS

Varchar, null

SPWareCertSig The certificate used to validate

SPWare response signature if

session was between SPWare.

Varchar, null

SPWareCertEnc The certificate used to encrypt

SPWare request if session was

between SPWare

Varchar, null

StateID Indicates state of this session.

References the State table

Int, not null

CreatedBy Holds name of persistence

implementation used by VIDP

Varchar, not

null

DateCreated When this session was created Timestamp

NULL default

NULL

Null (since

sessions are

created by

persistence layer

this value will

never be null else

is a faked one)

ModifiedBy Holds name of persistence

implementation used by VIDP

Varchar, null Null

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 53 of 75

Name Description Type Default

LastModified When this session was last

modified

Timestamp, null CURRENT_TIM

ESTAMP on

update

CURRENT_TIM

ESTAMP

Table 58: Session Tracking Table

7.9 Session History

The session history table reflects a copy of the session table and holds session information of

finished transactions. For details on the table elements see section 0.

7.10 STORKAttributes

Holds STORK specific attributes.

Name Description Type Default

AttributeID

Identifies an attribute Varchar, , Not

null Unique,

primary key

Values from Sequence

named

SEQ_STORKAttibute

Name Name of attribute Varchar, not

null

Description Description of attribute Varchar, not

null

Type Indicate data type of the attribute Varchar, not

null

StateID Indicates state of this attribute.

References the State table

Int, not null

CreatedBy Holds name of person who

created that entry

Varchar, not

null

DateCreated When this attribute was created timestamp

NULL default

NULL

Null (since attributes are

created by persistence

layer this value will never

be null else is wrongly

created)

ModifiedBy Holds name of person who last

modified that entry

Varchar, null Null

LastModified When this SP was last modified Timestamp,

null

CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

Table 59: STORK Attributes Configuration

7.11 CountryAttribute

Holds attributes of member states with mappings to corresponding STORK attributes

Name Description Type Default

AttributeID

Identifies an attribute Varchar, , Not null

Unique, primary key

Values from Sequence

named

SEQ_CountryAttibute

Name Name of attribute Varchar, not null

Description Description of attribute Varchar, not null

AttributeTypeID Indicate data type of the

attribute by referencing

attributetype table

Varchar, not null

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 54 of 75

CountryID Country to which attribute

belongs.

References

STORKAttribute table

Int, not null

STORKAttributeID STORK Attribute.

References

STORKAttributes table

Int, not null

StateID Indicates state of this

attribute. References the

State table

Int, not null

CreatedBy Holds name of person who

created that entry

Varchar, not null

DateCreated When this country

attribute was created

timestamp NULL

default NULL

Null (since country

attribute are created by

persistence layer this

value will never be null

else is wrongly created)

ModifiedBy Holds name of person who

last modified that entry

Varchar, null Null

LastModified When this country

attribute was last modified

Timestamp, null CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

Table 60: CountryAttributes Configuration

7.12 STORKErrorCode

Holds STORK error codes defined in specification

Name Description Type Default

ID

Identifies a STORK error code Varchar, , Not

null Unique,

primary key

Value from STORK error

code Specification

Name Name of error code name Varchar, not

null

Description Description of the error code Varchar, not

null

StateID Indicates state of this error code.

References the State table

Int, not null

CreatedBy Holds name of persistence

implementation used by VIDP

Varchar, not

null

DateCreated When this error code entry was

created

timestamp

NULL default

NULL

Null (since error codes

are created by persistence

layer this value will never

be null else is wrongly

created)

ModifiedBy Holds name of person who

created that entry

Varchar, null Null

LastModified When this error code was last

modified

Timestamp,

null

CURRENT_TIMESTAM

P on update

CURRENT_TIMESTAM

P

Table 61: STORKErrorCode Configuration

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 55 of 75

7.13 SPWareErrorCode

Holds SPWare error codes with corresponding mapping to STORK error codes.

Name Description Type Default

ID

Identifies a SPWare error code Varchar, , Not null

Unique, primary

key

Value from SPWare

error code

Specification

ErrorCode SPWare error code Varchar, not null

Message Message for this SPWare error code Varchar, not null

Description Description of the error code Varchar, not null

STORKErroCo

deID

Mapping to STORK error code. Its

references STORKErrorCode t able

SPWareID Refenreces the SPWare table.

Holds MW SPWare

Int, not null

StateID Indicates state of this attribute.

References the State table

Int, not null

CreatedBy Holds name of person who created

that entry

Varchar, not null

DateCreated When this SPWare error code was

created

timestamp NULL

default NULL

Null (since SPWare

error codes are created

by persistence layer

this value will never be

null else is wrongly

created)

ModifiedBy Holds name of person who last

modified that entry

Varchar, null Null

LastModified When this SPWare error code was

last modified

Timestamp, null CURRENT_TIMESTA

MP on update

CURRENT_TIMESTA

MP

Table 62: SPWareErrorCode Configuration

7.14 Option Model Configuration

This section presents the option configuration model of the Middleware. An option that holds

global variables is derived from a specific option group which must be a child element of an

option type. A unique identification of an option will be an option item which is quite specific to a

context such as SPWare, SP, C-PEPS, or S-PEPS.

7.14.1 Option Type

Name Description

SPWare Holds information related to SPWare (e.g. eID-Service)

Table 63: SPWare Option Type

7.14.2 Option Group

Name Description Option Type

SPWareConnection Holds connection information related to a

SPWare (e.g. eID-Service)

SPWare

Polling Holds polling information related to a SPWare

(e.g. eID-Service)

SPWare

Table 64: SPWare Option Group

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 56 of 75

7.14.3 Option

Name Description Option Group Default-

String

Default

Float

Default

Bool-

ean

Default

Date

StageingURL URL to staging

SPWare

SPWareConnection http://ww

w.eID-

Service.de

LiveURL URL to live

SPWare

SPWareConnection http://ww

w.eID-

Service.de

Production Production to

connect to(Mock,

Staging, or Live)

SPWareConnection Mock

PollingEnabled By PENDING

during

getAuthentication

Data SPWare can

keep polling

Pollings No

MaxNumberOf

Pollings

Max number of

pollings

Pollings 5

ConnectionTim

eout

The timeout in

seconds for

connection

SPWareConnection 30

SignCert For signature

validation

SPWareConnection

EncryptCert For encryption SPWareConnection

MessageSignatu

reEnabled

If message should

be signed

SPWareConnection

MessageEncrypt

ionEnabled

If message should

be encrypted

SPWareConnection

SSLServerAuth

Enabled

If SSL server

authentication is

enabled

SPWareConnection

SSLClientAuth

Enabled

If SSL client

authentication is

enabled

SPWareConnection

SSLTrustStore Truststore to be

used for SSL

connection

SPWareConnection

SSLClientKeySt

ore

Keystore to be

used for SSL

client

authentication

SPWareConnection

BkuURL URL to client

middleware

SPWareConnection

MessageEncodi

ng

Encoding type for

message

SPWareConnection

AuthenticationE

nabled

If authentication

is enabled

SPWareConnection

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 57 of 75

Authentication

MutualEnabled

If PKI mutual

authentication is

required

SPWareConnection

SPWareMockPr

ocessor

SPWare mock

implementation

used when

production is in

mock state

SPWareConnection

Table 65: SPWare Option

7.14.4 Option Item

Used to override option default values for a specific context.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 58 of 75

8 References

[1] D5.7.3 Functional Design for PEPS, MW models and interoperability, STORK eID-

Consortium, Final Version

[2] D5.8.3 Technical design, eID-Consortium, Final Version

[3] D5.8.3a Software Architecture Design, eID-Consortium, Final Version

[4] D5.8.3b Interface Specification, eID-Consortium, Final Version

[5] D5.8.3c SoftwareDesign for PEPS architecture, eID-Consortium Final Version

[6] D5.8.3d Security Principles and Best Practices, eID-Consortium, Final Version

[7] Schamberger, Karlinger, Moser: Spezifikation MOA ID, Version 1.4, 02.08.2007

[8] Project MOCCA, http://mocca.egovlabs.gv.at/

[9] The Austrian Citizen Card,

http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/

[10] Security Assertion Markup Language (SAML), http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=security

[11] The Austrian E-Government Act

[12] Common V-IDP Deployment Instructions, v1.6

http://mocca.egovlabs.gv.at/
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 59 of 75

A. Appendix Germany Integration

A.1 Overview

Germany decided the introduction of the electronic identification card (Neuer Personalausweis,

nPA), which provides the possibility of an electronic identification and authentication of the

document holder. This process requires a Software component (―Bürgerclient‖) for the end-user

and an eID-Service, which is required to access the data stored electronically on the document.

The STORK approach requires the possibility of an electronic authentication and identification by

the use of an infrastructure provided by the member states.

This appendix presents information about the German eID-approach using the Bürgerclient and

the eID-Service and its integration into the STORK architecture.

Moreover this appendix handles both designs of a User-Centric Authentication (UCA) whereby

authentication request and response are directed through the user agent by using S-PEPS as well

as other various alternatives such as avoiding request/response through user agent by directly

accessing the VIDP-WS. Moreover there are scenarios whereby a SP will not like to expose the

Authentication Service to end users and vice versa. After a successful authentication some SPs

will prefer authentication status notification with authentication data in one call (by S-PEPS)

while others will prefer to pull the authentication data (VIDP-WS). In order to achieve this

dynamism and flexibility, optional configuration model architecture is required. The above

description could be summarized to two clear Use Case defined in the STORK Architecture

which include:

6. UC-AU-P-eIdService

7. UC-AU-M-eIdService

The following section provides some basic information about the German eID-approach. Please

refer to the technical guidelines of the Bundesamt für Sicherheit in der Informationstechnik (BSI)

to get more detailed knowledge about the involved specifications.

German Identity Card

Germany has introduced the electronic identity card beginning on November, the 1st of 2010. The

German identity card (nPA) provides the functionality to read the personal data stored

electronically in the document. This functionality is intended to provide a secure and trustworthy

way of accessing personal data by external application, e.g. Service Providers, which need to

identify the counterpart of the communication.Before the data can be accessed, a set of

cryptographic protocols must be executed which allow an external application to access these

data. The protocols name is Extended Access Control (EAC) and it is documented in [TR 03110].

The software components Bürgerclient and eID-Server are required for the execution of the EAC

protocol in a remote manner. These Software components are both set up on the technical

guideline TR 03112 (eCard-API-Framework)

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 60 of 75

A.2 Online Authentication with AusweisApp4 and eID-Service

The Software architecture discussed in this document is based on the eID-Service Approach that

is used for the German identity card. The general approach is a user centric way of the online

authentication which can be using SAML 2.0. The following graphic depicts this:

Figure 8: German Online Authentication with eID-Service and AusweisApp

In the following the authentication mechanism is explained in a general manner.

The Service Provider (SP) provides a Web-Application containing a resource which requires a

user authentication. In case that the user tries to login, the Web-Application generates a SAML

authentication request (SAML-AuthnRequest) and sends it back to the Browser together with the

directive to forward the SAML-AuthnRequest to the eID-Service.

The eID-Service receives the SAML-AuthnRequest and initiates the communication with the

AusweisApp5. The AusweisApp and the eID-Service establish a TLS protected channel which is

used to read the requested data from the electronic identity card.

4 Please note that Bürgerclient is an older name for the client middleware now called AusweisApp.

5 This is already done by sending a response to the browser of the user containing a Mime Object as

specified in [eCard-7]. This starts the AusweisApp, which is now connecting to the eID-Service.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 61 of 75

When the data has been read, the eID-Service generates the SAML-AuthnResponse and sends it

back to the browser which redirects the SAML-AuthnResponse to the Service Provider (SP).

A.3 Use Cases

 UC-AU-P-eIdService

The following graphic depicts the use case UC-AU-P-eIdService. It shows how the STORK

Middleware is triggered by the S-PEPS and how the middleware communicates with the eID-

Service used in Germany of Online Authentication with the electronic identity card.

In this use case, all communication is handled user centric. This means that the user agent is a

broker for the communication between the participants in the data flow.

The following graphic depicts the data flow between the Service Provider (SP), the S-PEPS, the

STORK Middleware (Virtual Identity Provider, VIDP) and the German Online Authentication

system consisting of an eID-Service and the AusweisApp.

The role of each component is explained in later chapters.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 62 of 75

 Figure 9: Authentication Flow- UC-AU-P-eIdService

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 63 of 75

 UC-AU-M-eIdService

The following graphic depicts the use case UC-AU-P-eIdService. It shows how the STORK

Middleware is triggered by the SP and how the middleware communicates with the eID-Service

used in Germany of Online Authentication with the electronic identity card.

In this use case, all communication is handled user agent. This means that the user agent is a

broker for the communication between the participants in the data flow.

The following graphic depicts the data flow between the Service Provider (SP), the STORK

Middleware (Virtual Identity Provider, VIDP) and the German Online Authentication system

consisting of an eID-Service and the AusweisApp. The role of each component is explained in

later chapters.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 64 of 75

Figure 10: UC-AU-M-eIdService

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 65 of 75

A.4 Sequence Diagrams

This section presents all possible use cases supported by the STORK MW.

 Authentication Flow -UC-AU-P-eIdService

The S-PEPS handles the complete authentication process with in-outbound messages exposed to

the end user. All in/outbound authentication messages are redirected through the end user’s

browser as illustrated in the figure below followed by a tabled detailing the flow.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 66 of 75

Figure 11: Sequence Diagram - UC-AU-P-eIdService

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 67 of 75

Action Description in the order of events

getResource End User request for a resource

InitAuthentication SP initiates authentication process through S-PEPS by redirecting end-user to

S-PEPS with eID-Service Attributes

 S-PEPS does logging, authentication and authorization as well as attribute

validation

 S-PEPS translates request to STORKAuthRequest

 S-PEPS does another redirect to VIDP(V-SP/S-PEPS) with STORKRequest

 (V-SP/S-PEPS)Calls VIDP with STORKAuthRequest

 VIDP decides to route to either a C-PEPS or SPWare.

 The VIDP uses the service locator to retrieve the SPWare client that forwards

calls to MS SPWare web service implementation

 SPWare for the specific country implementation does a mapping to member

state attributes and makes use of the SPWare table to access the country

MW(e.g. eID-Service access with SAMLRequest signed and encrypted)

 An HTTP-Get/SAML request is sent to eID-Service

 SPWare Updates session information with response refreshUrl and sessionID

from eID-Service

 SPWare replaces the refreshUrl in httpobject from the eID-Service with the

AssertionConsumerServiceUrl of the S-PEPS

 SPWare returns the HttpObject to the VIDP and VIDP to V-SP/V-PEPS)

which then returns the call to BC-Plugin

http-POST with

refresh URL by BC

Plugin

 The BC browser Plug-in calls AusweisApp which opens connection with

eID-Service.

 The BC browser Plug-in then makes an http-Post using the refreshURL in

htmlObject to V-SPEPS/V-SP

 The V-SP/S-PEPS receives request from BC-Plug-in logs, and validates

message.

 V-SP/V-PEPS forwards call to VIDP.

 The VIDP determines which SPWare or PEPSConnector to use.

 If SPWare chosen and it’s Germany SPWare, it uses the sessionID from

VIDP to retrieve the refreshURL using the SessionManager.

 If authentication processing status is in pending mode, SPWare returns a

PENDING Status response to VIDP, checks if polling is enabled globally or

for this SP, it will keep polling for the results from eID-Service. Is VIDP

allowed to store AuthenticationData after a successful polling?

 If authentication is received, the SPWare does mapping to STORKResponse

and returns to VIDP. The VIDP returns it to V-SP/V-PEPS which then

returns to S-PEPS

 S-PEPS maps STORKResponse to eID-Service attributes and return to SP

through a redirect

Table 66: General Flow of UC-AU-P-eIdService

 Authentication Flow UC-AU-M-eIdService

The VIDP handles the complete authentication process without direct routing of in/outbound

messages to end user’s browser or BC-plug-in and vice versa. See figure below.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 68 of 75

Figure 12: Sequence Diagram - UC-AU-M-eIdService

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 69 of 75

Action Description in the order of events

getResource End User request for a resource

InitAuthentication SP initiates authentication process through VIDP-WS web services.

 VIDP-WS does logging, authentication, and authorization and attribute validation.

 Translate to STORKAuthRequest.

 Calls VIDP with STORKAuthRequest.

 VIDP decides to either to route to a C-PEPS or a SPWare.

 SPWare for the specific country implementation does a mapping to member states’

attributes and makes use of the SPWare table to make access to the country MW(

e.g. eID-Service access with SAMLRequest signed and encrypted)

 An HTT-Get/SAML request is sent to eID-Service

 Updates session information with refreshUrl and sessionID from eID-Service

 replaces the refreshUrl in httpobject from the eID-Service with the

AssertionConsumerServiceUrl of the SP

 returns the HttpObject to the SP which then returns as response to the browser

http-POST with

refresh URL by BC

Plugin

 The BC browser Plug-in makes an http-Post using the refreshURL in htmlObject to

SP or S-PEPS

 The SP calls the VIDP-WS getAuthenticationData while the S-PEPS will do simple

http-POST(redirect to VIDP)

 The VIDP-WS or the front end that receives request from S-PEPS logs,

authenticates and authorizes SP/S-PEPS, and validates message.

 VIDP-WS forwards call to VIDP.

 The VIDP determines which SPWare or PEPSConnector to use. This is done

through the use of service locator that returns either SPWare client of

PEPSConnector.

 If SPWare chosen and its Germany SPWare, it uses the sessionID from VIDP to

retrieve the refreshURL using the SessionManager.

 If authentication processing status still in pending mode, SPWare returns a

PENDING Status response to VIDP, checks if polling is enabled globally or for this

SP, it will keep polling for the results from eID-Service. Is VIDP allowed to store

AuthenticationData after a successful polling?

 If authentication is received, the SPWare does mapping to STORKAuthResponse

and returns to VIDP. The VIDP returns it to VIDP-WS which then maps to eID-

Service attributes and returns to SP, which returns the resource to the end user.

Table 67: General flow in a UC-AU-M-eIdService

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 70 of 75

B. Appendix Austria Integration

Austria’s national electronic identification and authentication solution is also based on a user-centric

approach that is called Austrian citizen card concept. The following sections briefly outline the

Austrian eID architecture as well as its integration into the STORK middleware architecture and the

general STORK concept.

B.1 Austrian eID architecture

The Austrian Citizen Card concept is primarily defined for secure identification and authentication of

citizens at online governmental or business service providers. The according eGovernment act [11]

describes a technological neutral approach for this concept, thus smart-cards, mobile devices or any

other technological approach fulfilling the specification of the Austrian Citizen Card is applicable. In

particular, the Austrian Citizen Card is used for the creation and verification of electronic signatures.

Those digital signatures based on qualified certificates can be used for the verification of a citizen’s

authenticity in online proceedings.

 Browser

Server-side Middleware

MOA-ID

Client Middleware

Citizen

SAML

Application
SP

Domain

Citizen

Domain

National Protocol

Figure 13: Austrian eID architecture

Figure 13 illustrates the middleware architecture applied in Austria based on smart-cards. The aim of

this architecture is to decouple the actual identification and authentication process from the online

application. The middleware actually consists of two parts, a client middleware and a server-side

middleware. The client middleware handles the smart card communication while the server-side

middleware manages the actual authentication process and the communication with applications of a

service provider. The server-side middleware MOA-ID [7] has been developed to decouple a service

provider from the card specifics. The client middleware allows the server-side middleware to access

an Austrian eID card via a Web browser.

The client middleware can either be a piece of software running on the user’s PC or a Java Applet

running in the user’s browser. In case of adopting the alternative using the Java Applet, this client

middleware (called MOCCA [8]) is also divided into two parts. The Java Applet running on the

citizen’s client is responsible for the card-based communication with the Austrian eID cards. The

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 71 of 75

client middleware running on a remote server executes computationally intensive operations needed

for the communication between the server-side middleware MOA-ID and the eID cards.

In general, to enable citizens secure access to online services using their national eID, the service

provider, e.g. a municipality, must at least run a server-side middleware MOA-ID and a server-based

client middleware MOCCA if desired.

According to Figure 13, within the authentication architecture the following two important interfaces

can be identified.

MOA-ID – Client Middleware:

Between the citizen’s client middleware and MOA-ID a national protocol is used. This national

interface is called Security Layer [9] and defines functions on an abstract level for the citizen card (e.g.

creating digital signatures) which can be accessed by MOA-ID. The protocol used for communication

between these two modules is based on XML. The XML-commands for the security layer can be

bound to an arbitrary transport protocol such as TCP/IP or HTTP. In case of MOA-ID, HTTP over

SSL/TLS is used.

MOA-ID – SP application:

MOA-ID provides a common and well-defined interface based on SAML (Security Assertion Markup

Language) [10] for the exchange of authentication and identity information between MOA-ID and

SAML-aware applications of a service provider. This message exchange protocol is based on the

SAML Browser/Artifact Profile in version 1.0.

3.1 Process Flow

A process flow for an eID based authentication in Austria is shown in the sequence diagram in Figure

14.

Browser Application MOA-ID Client Middleware

Access Resource

Access CheckRedirect to MOA-ID

Redirect

HTML Form

InfoBoxReadRequest

Read IdentiyLinkSend IdentityLink

SignRequest

Sign DataSend SignedData

Verify IdentiyLink

Verify Signature and create SAML Assertion

Redirect to Application with SAML Artifact

Redirect

SAMLRequest (Artifact)

SAMLResponse (Assertion)

Redirect

Redirect

Figure 14: Authentication Process Flow in Austria

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 72 of 75

In this diagram, a user is requesting access to a citizen-card protected resource of a service provider.

The application of the service provider checks whether a security context has already been established

before. In this example the user is not yet authenticated and hence is redirected to the server-side

middleware MOA-ID.

MOA-ID creates a session context and sends an XML-based, so-called InfoBoxReadRequest included

in a HTML form to the client middleware via the user’s browser. This request message is processed by

reading a so-called identity link from the user’s citizen card. The identity link defines a special data

structure based on SAML containing identity information of the user. This comprises the user’s unique

identifier, the user’s first and last name, and the user’s date of birth. The identity link is sent back to

MOA-ID and the attached signature is verified. After successful verification, MOA-ID sends a

signature request to the client middleware containing data the user should sign for certifying the

authentication appliance. The client middleware displays the user the data to be signed and transfers

the result of the signature process back to MOA-ID again. MOA-ID verifies the applied signature and

creates a SAML Assertion based on the user’s identity information. Due to privacy regulations, the

unique identifier stored on the citizen card must not be transferred to every application (e.g. not to

business services). Therefore, the unique identifier is derived by a one-way hash function into a unique

sector-specific identifier. The calculation of the sector-specific identifier depends on whether the

respective application is a public or business service.

According to the SAML Browser/Artifact Profile, MOA-ID generates a so-called SAML artifact,

which specifies a reference to the previously created SAML assertion. This artifact is appended to the

URL of the actual requested application the user is redirected to afterwards. The artifact is used to

dereference the SAML assertion. For that, the application assembles a SAMLRequest message

including the artifact and sends it via back-channel communication (SOAP over HTTP(s)) to MOA-

ID. Using the obtained artifact, MOA-ID looks up the corresponding assertion, wraps it into a

SAMLResponse message and transfers it back to the requesting application. The application verifies

the received identity and authentication information and grants or denies access to the requested

protected resource.

B.2 Integration into STORK Middleware

This section describes the integration of the Austrian middleware concept into the STORK

architecture. It can be distinguished between two different use cases where the Austrian middleware is

involved. The first one addresses the use case where the Austrian middleware is triggered through the

VIDP by a foreign S-PEPS (S-PEPS – VIDP – MOA-ID). The second use case defines the citizen

authentication requested by an Austrian service provider (SP-AT – VIDP – MOA-ID).

B.2.1 Use Case: S-PEPS – VIDP – MOA-ID

This use case defines the authentication scenario for an Austrian citizen who wants to authenticate at a

foreign service provider located in a so-called PEPS country. In this case, the actual authentication

request at the service provider is forwarded to the PEPS which in turn calls the VIDP. The VIDP

determines the appropriate SPWare and – for Austria – authentication is further processed by MOA-

ID. The sequence diagram in Figure 14 illustrates the individual process steps.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 73 of 75

Figure 15: Austrian citizen to S-PEPS authentication

B.2.2 Use Case: SP-AT – VIDP – MOA-ID

In this use case a user wants to authenticate at an Austrian Service Provider. If the Austrian SP is not

capable of the new SAML Web interface, legacy support is given. For this, a special adapter is

developed that transfers legacy requests into STORK requests and vice versa. Figure 16 illustrates the

authentication flow for this use case.

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 74 of 75

Figure 16: Austrian citizen to Austrian SP-MW authentication

D5.8.3e Software Design for MW architecture November 11th 2011

 STORK-eID Consortium Page 75 of 75

C. Appendix C-PEPS integration

This section gives a brief summary about the integration of a C-PEPS into the STORK middleware

architecture. It handles the use case where a citizen coming from a so-called PEPS country wants to

authenticate at a service provider located in a middleware country. Details on this process flow have

already been specified in deliverable D5.8.3a [3]. To keep this document self-contained, Figure 17

illustrates such an authentication process again.

Figure 17: Foreign PEPS citizen to SP-MW

	History
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Executive summary
	Introduction
	Objective
	Context
	Glossary

	STORK Middleware
	General Architectural Approach
	Functional Requirement of the STORK Middleware
	General STORK Authentication Reference Components
	Components of STORK MW

	Middleware Components Interfaces
	VIDP
	SPWare
	Dynamic integration of plug-on and plug-ins.
	VIDP-WS-DE (The German Web Service and Interfaces)
	initAuthentication
	Response
	getAuthenticationData
	isLive

	SP-MW Adapter AT (Web)
	V-PEPS/V-SP (Web)
	Process Flow

	PEPSConnector
	Back-End
	Process Flow
	startAuthentication
	getAuthenticationData

	Front-End
	Process Flow

	Application, Modules and Packaging
	Applications
	Modules
	Packages
	VIDP-API Module
	VIDP-EJB
	VIDP-WS-EJB
	VIDP-V-SPEPS-WEB
	VIDP-PEPSConnector-WEB
	VIDP-SPWare-Client<CountryName>-EJB
	VIDP-Services
	VIDP-SPWare-API
	VIDP-SPWare-<CountryName>-EJB
	VIDP-PEPSConnector-EJB
	SAML Engine

	Security Concept
	Authentication and Authorization at VIDP
	Message Security

	Codes and Attributes (VIDP-WS and VP)
	Status (VIDP-WS)
	Error Codes
	Current Supported Attributes by eID-Service
	DE eID-Service STORK Attributes Mapping
	AT STORK Attributes Mapping
	Attribute Status

	Persistence
	State Table
	SP
	S-PEPS
	C-PEPS
	SPWare
	PEPSConnector
	STORKMemberStates
	Session
	Session History
	STORKAttributes
	CountryAttribute
	STORKErrorCode
	SPWareErrorCode
	Option Model Configuration
	Option Type
	Option Group
	Option
	Option Item

	References
	Appendix Germany Integration
	Appendix Austria Integration
	Appendix C-PEPS integration

