Document Name

 Day Month Year

COMPETITIVENESS AND INNOVATION FRAMEWORK PROGRAMME

ICT Policy Support Programme (ICT PSP)
Towards pan-European recognition of electronic IDs (eIDs)

Project acronym: STORK

Project full title: Secure Identity Across Borders Linked

STORK Service Providers

Start Guide

	Deliverable Id :
	

	Deliverable Name :
	

	Status :
	

	Dissemination Level :
	

	Due date of deliverable :
	

	Actual submission date :
	

	Work Package :
	WP5.8

	Organisation name of lead contractor for this deliverable :
	

	Author(s):
	

	Partner(s) contributing :
	PT,ES

Abstract: Quick Guide to configure and deploy STORK Service Providers.

Project co-funded by the European Community under the ICT Policy Support Programme

(Copyright by the STORK-eID Consortium

History

	Version
	Date
	Modification reason
	Modified by

	0.1
	01/03/2011
	Initial Guide
	Joaquín Alcalde-Moraño Jensen

	0.2
	17/10/2011
	New StorkDemoSP
	Joaquín Alcalde-Moraño Jensen

	
	2011-12-09
	Customized to Slovenian environment
	Maks Romih

Table of contents

2History

3Table of contents

4List of abbreviations

5Executive summary

61
Introduction

72
Before you start

72.1
Keystore

72.2
Server Configuration

72.2.1
Tomcat 5

72.2.2
Tomcat 6

82.2.3
JBoss 5

82.2.4
Glassfish V3

93
Quick Start

93.1
Configurations

93.2
Quick Compilation/Deployment

93.2.1
Tomcat Server Deployment

104
Installing Stork Demo SP

104.1
Configuration files

104.1.1
sp.properties

124.1.2
SamlEngineSignConfig.xml

134.2
Start Application

155
STORK API

155.1
JARs

155.2
Examples of use

155.2.1
Generating a STORK Authentication Requests

165.2.2
Validating and Reading STORK Authentication Responses

176
Set of Test Certificates

List of abbreviations

<Abbreviation>

<Explanation>

STORK

Secure idenTity acrOss boRders linKed

PEPS
Pan European Proxy Server

SP
Service Provider

Executive summary

This document is meant to provide a quick and, also, a more detailed information on how to configure, build and deploy an SP application for use the STORK network.

First of all we need to have an application server up and running, so, first there are provided some basic configurations of the server.

Then this document describes what you need to know about different configurations of the several projects, in order to successfully build the application.

So, after reading this document, you should be able to configure, build and deploy the application by yourself.
1 Introduction

This document is divided in several parts.

First of all, it’s presented a set of steps to be followed in order to configure an Application Server (Tomcat, JBoss, etc) to serve as container for your application.

Then, a quick guide describes how to run the application in a few minutes.

After that, the configurations are explained in a more detailed way, in order for you to change its specific aspects.

Finally, there is a FAQ section, were we answer the more common doubts.

2 Before you start

Before you begin make sure that you have Tomcat 5.5+ installed on your machine, ensuring that it has the OpenSAML library. The project build files are in Maven2 format, so you also need it installed. The project is built using the version 1.5+ of the Java SDK.

In the next section, instructions are provided on how to deploy the project on Tomcat 6 or JBoss 5 or GlassFish v3.

In this document there will be used some variables which are going to be explained below:

· $TOMCAT_HOME – Base directory of your tomcat server. (e.g. /home/user/apps/apache-tomcat-5.5.28)
· $JBOSS_HOME – Base directory of your JBoss server. (e.g. /home/user/apps/jboss-5.1.0.GA)

· $SERVER_CONFIG – JBoss server configuration name (e.g. default)

So, if you want to use the “default” configuration server, your full path will be /home/user/apps/jboss-5.1.0.GA/server/default

· $GLASSFISH_HOME – Base directory of your Glasshfish server (e.g. /home/user/apps/glasshfishv3);

2.1 Keystore

Copy your “demoSp.jks” (the key store with your StorkDemoSP sign certificate and the public certificates of the Test and Production country environments) into a directory of your own choice, and make sure that the properties “keystorePath” on file STORKDemoSP \src\main\resources\eu \SamlEngineSignConfig.xml reflects the location of your SP “demoSp.jks”;
For more information check 4.1.

2.2 Server Configuration

2.2.1 Tomcat 5

Extract the OpenSAML zip and copy the following libs to $TOMCAT_HOME/common/endorsed
endorsed\xml-apis-2.9.1.jar

endorsed\resolver-2.9.1.jar

endorsed\serializer-2.9.1.jar

endorsed\xalan-2.7.1.jar

endorsed\xercesImpl-2.9.1.jar

2.2.2 Tomcat 6

Create a folder named endorsed in $TOMCAT_HOME.

Create a folder named shared in $TOMCAT_HOME and a subfolder named lib in $TOMCAT_HOME\shared

Edit the file $TOMCAT_HOME\conf\catalina.properties and change the property shared.loader so that it reads:

shared.loader=${catalina.home}/shared/lib/*.jar

Open the OpenSAML zip and copy the following libs to $TOMCAT_HOME/endorsed
endorsed\xml-apis-2.9.1.jar

endorsed\resolver-2.9.1.jar

endorsed\serializer-2.9.1.jar

endorsed\xalan-2.7.1.jar

endorsed\xercesImpl-2.9.1.jar

2.2.3 JBoss 5

Open the OpenSAML zip and copy the following libs to $JBOSS_HOME/lib/endorsed
endorsed\xml-apis-2.9.1.jar

endorsed\resolver-2.9.1.jar

endorsed\serializer-2.9.1.jar

endorsed\xalan-2.7.1.jar

endorsed\xercesImpl-2.9.1.jar
2.2.4 Glassfish V3
Open the OpenSAML zip and copy the following libs to $GLASSFISH_HOME/ glassfish/lib/endorsed
endorsed\xml-apis-2.9.1.jar

endorsed\resolver-2.9.1.jar

endorsed\serializer-2.9.1.jar

endorsed\xalan-2.7.1.jar

endorsed\xercesImpl-2.9.1.jar
3 Quick Start

This quick start allows you to set-up, compile and run the project in a few minutes, with only one instance of your Application Server. Remember that your server must be configured, as described in the previous chapter (see “Before you start”). Further information about configurations files, attributes, can be found on the next chapter.

3.1 Configurations
1. Edit the file StorkDemoSP\src\main\resources\sp.properties and change the following properties:
· sp.return=https:// insert.your.ip.here /StorkDemoSP/ReturnPage

· sp.pepsurl=https://insert.your.country.access url.to.STORK
You now have a Service Provider configured to run on your IP address.

3.2 Quick Compilation/Deployment
3.2.1 Tomcat Server Deployment
You must compile, install and deploy the projects, in the following order.

1. In STORKDemoSP folder type:

· mvn clean package

· copy target\STORKDemoSP.war $TOMCAT_HOME\webapps\ STORKDemoSP.war
Finally, run your tomcat, start your browser and navigate to the following page: http://your.ip.goes.here:portGoesHere/StorkDemoSP
4 Installing Stork Demo SP
4.1 Configuration files
Stork Demo SP provides configuration files that can be tweaked. In this section we will explain what are those files are and what is each property.

4.1.1 sp.properties

The sp.properties provides the main Service Provider configurations.

	Key
	Description

	sp.name
	Service Provider name

	sp.sector
	Sector for this service provider

	sp.application
	Application for this service provider

	sp.country
	Country for this service provider

	sp.environment
	Connect environment of this StorkDemoSP (TEST / PROD)

	sp.qaalevel
	QAA level of this Service Provider

	sp.return
	URL used when the Stork Country Service finishes the process

Avaliable attributes for this SP:

	Key
	Description

	attribute.number
	Number of attributes to be requested

	attributeX.name
	Name of the attribute X

	attributeX.mandatory
	If this attribute is not retrieved with a value, there is no authentication.

	attributeX.value
	Optional parameter that will set the value for special attributes such as isAgeOver

Filtered countries for this SP:

	Key
	Description

	discountry.number
	The number of countries that this SP doesn’t want to communicate

	discountryX
	The name of the country X

Now, you must to choose between two options:

1.- Automatic control of countries: A XML file provided by your Production STORK Node is used.

2.- Manual control of countries. Then you need to configure each country in this sp.properties file.

	Key
	Description

	sp.versioncontrol
	If “true” we are in the first option. And if is “false”, we are in the Manual Control of countries

OPTION 1)
sp.versioncontrol=true
	Key
	Description

	versioninfofile
	Local path where is located the downloaded XML file with the country info.

OPTION 2)
sp.versioncontrol=false
	sp.pepsurl
	URL of your country STORK Node.

Avaliable countries for this SP:

	Key
	Description

	country.number
	The number of possible countries that communicate with this SP

	countryX.name
	The name of the Country X

4.1.2 SamlEngineSignConfig.xml

This file is used to configure the Sign and Validation module for the SAML tokens used to send Authentication Request and receive Authentication Responses.

	Key
	Description

	keystorePath
	Path were the JKS file is located

	keyStorePassword
	Password of the JKS

	keyPassword
	Password of the private certificate

	issuer
	Issuer of the private certificate

	serialNumber
	Serial Number of the certificate

	keystoreType
	Type of the keystore (JKS)

In the keystore you should have a private certificate (to sign your SAML Authentication Requests). You must also have the public certificate of your STORK Country Server, so you can validate its Authentication Responses.

4.2 Start Application

After performing the steps above, start your Application Server, open your browser and navigate to http://your.ip.addres/StorkDemoSP (if your server is listening at another port feel free to change the URL). You should be viewing the following page:

[image: image1.png]
Figure 1 – Stork Demo Service Provider Home Page

Once selected the Country’s electronic Certificate desired (Citizen-Country), you are redirected to the STORK network and interact with your SP-Country STORK Server and with the Citizen-Country STORK Server.

At last, you will be redirected to http://your.ip.addres/StorkDemoSP/ReturnPage, and view the following page:

[image: image2.png]
Figure 2 – Stork Demo Service Provider Return Page

5 STORK API

5.1 JARs

STORK API is composed by two JARs:

· saml-engine-xxx.jar: is the one for validate and create SAML tokens.

· stork-commons-xxx.jar: is used for manage the data extracted from tokens.
5.2 Examples of use

5.2.1 Generating a STORK Authentication Requests
//Creating STORK Authentication Request --------------------------------

STORKAuthnRequest authnRequest = new STORKAuthnRequest();

//Filling Authentication Request fields --------------------------------

authnRequest.setIssuer(..);

authnRequest.setDestination(..);

authnRequest.setProviderName(..);

authnRequest.setQaa(Integer.parseInt(..));

authnRequest.setAssertionConsumerServiceURL(..);

authnRequest.setSpSector(..);

authnRequest.setSpInstitution(..);

authnRequest.setSpApplication(..);

authnRequest.setSpCountry(..);

authnRequest.setSPID(..);

authnRequest.setCitizenCountryCode(..);

//Selected Citizen Country
//Loading Stork attributes to request

IPersonalAttributeList attributelist = new PersonalAttributeList();

PersonalAttribute attribute1 = new PersonalAttribute();

attribute1.setName(..);

//Attribute name

attribute1.setIsRequired(true);

//Attribute mandatory

attributelist.add(attribute1);

// The same for more attributes

authnRequest.setPersonalAttributeList(attributelist);

//Getting STORKSAMLEngine object --------------------------------------

STORKSAMLEngine engine = STORKSAMLEngine.getInstance(“SP”);

authnRequest = engine.generateSTORKAuthnRequest(authnRequest);

byte[] token = authnRequest.getTokenSaml();

SAMLRequest = PEPSUtil.encodeSAMLToken(token);

Then, this SAMLRequest must be placed into a HTML form:

<form name="redirectForm" method="post" action="stork.country.server.URL”>

<input hidden name="SAMLRequest" value="above-SAMLRequest”/>

<input name="country" value="selectedCitizenCountry"/>

</form>

5.2.2 Validating and Reading STORK Authentication Responses
First, we receive a formulary with the field “SAMLResponse”.

Then:

//Decodes incoming SAML Response

byte[] decSamlToken = PEPSUtil.decodeSAMLToken(SAMLResponse);

//Get SAMLEngine instance

STORKSAMLEngine engine = STORKSAMLEngine.getInstance(“SP”);
//Validating SAML Authentication response

STORKAuthnResponse authnResponse = null;

authnResponse = engine.validateSTORKAuthnResponse(decSamlToken, (String)request.getRemoteHost());

//Reading Authentication Response

if(!authnResponse.isFail()){

 //Get attributes

 IPersonalAttributeList attributeList=authnResponse.getPersonalAttributeList();

 setAttrList(new ArrayList<PersonalAttribute>(attributeList.values()));

 Iterator<String> list = attrList.iterator();

 while (attrList.hasNext()){

PersonalAttribute attribute=attrList.next();

System.out.println("Attribute: "+ attribute.name);

System.out.println("Value: "+ attribute.value.get(0));

System.out.println("Status: "+ attribute.status);

 }

}else{

 System.out.println ("Saml Response is fail:" + authnResponse.getMessage());

}
6 Set of Test Certificates

A set of certificates is distributed with the StorkDemoSP application.

Its purpose is to serve for testing the authentication of Citizens with correspondent STORK Country Server.

	Certificate file
	Country
	Password

	Ana_Vzorec_02.pfx (valid)
	Slovenia
	Ana_Vzorec_02

	Ana_Vzorec_12.pfx (revoked)
	Slovenia
	Ana_Vzorec_12

	Ana_Vzorec_22.pfx (expired)
	Slovenia
	Ana_Vzorec_22

	PT_valido.p12
	Portugal
	#ptcert!

(STORK-eID Consortium [image: image3.png]

 Page 2 of 17

